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ABSTRACT 
 

An Object-Based Image Analysis of Treated and Untreated  
Pinyon and Juniper Woodlands Across the Great Basin 

 
April Hulet 

Department of Plant and Wildlife Sciences 
Doctor of Philosophy 

 
Land managers need to rapidly assess vegetation composition and bare ground to effectively evaluate, 
manage, and restore shrub steppe communities that have been encroached by pinyon and juniper (P-J) 
trees.  A major part of this process is assessing where to apply mechanical and prescribed fire 
treatments to reduce fuel loads and maintain or restore sagebrush steppe rangelands.  Geospatial 
technologies, particularly remote sensing, offers an efficient option to assess rangelands across multiple 
spatial scales while reducing the need for ground-based sampling measurements.   
 
High-spatial resolution color-infrared imagery (0.06-m pixels) was acquired for sagebrush steppe 
communities invaded by P-J trees at five sites in Oregon, California, Nevada, and Utah with a Vexcel 
Ultra CamX digital camera in June/July 2009.  In addition to untreated P-J woodlands, imagery was 
acquired over P-J woodlands where fuels were reduced by either prescribed fire, tree cutting, or 
mastication treatments.  Ground measurements were simultaneously collected at each site in 2009 on 
0.1-hectare subplots as part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP).  We 
used Trimble eCognition Developer to 1) develop efficient methods to estimate land cover classes found 
in P-J woodlands; 2) determine the relationship between ground measurements and object-based image 
analysis (OBIA) land cover measurements for the following classes:  trees (live, burned, cut, and 
masticated), shrubs, perennial herbaceous vegetation, litter (including annual species), and bare ground; 
and 3) evaluate eCognition rule-sets (models) across four spatial scales (subplot, site, region, and 
network) using untreated P-J woodland imagery.   
 
At the site scale, the overall accuracy of our thematic maps for untreated P-J woodlands was 84% with a 
kappa statistic of 0.80.  For treatments, the overall accuracy and kappa statistic for prescribed fire was 
85% and 0.81; cut and fell 82% and 0.77, and mastication 84% and 0.80, respectively, each indicating 
strong agreement between OBIA classification and ground measured data.  Differences between mean 
cover estimates using OBIA and ground-measurements were not consistently higher or lower for any 
land cover class and when evaluated for individual sites, were within 5% of each other; all regional and 
network OBIA mean cover estimates were within 10% of the ground measurements.  The trade-off for 
decreased precision over a larger area (region and network scale) may be useful to prioritize fuel-
management strategies but will unlikely capture subtle shifts in understory plant communities that site 
and subplot spatial scales often capture.  Although cover assessments from OBIA differed somewhat 
from ground measurements, they were accurate enough for many landscape-assessment applications 
such as evaluating treatment success and assessing the spatial distribution of fuels following fuel-
reduction treatments on a site scale.   
 
 
 
 
Keywords: eCognition Developer, mastication, object-based image analysis, pinyon-juniper woodlands, 
prescribed fire, remote sensing, SageSTEP, spatial scales, tree cutting 
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Abstract 

Land managers need to rapidly assess vegetation composition and bare ground to effectively evaluate, 

manage, and restore shrub steppe communities that have been encroached by pinyon (Pinus) and 

juniper (Juniperus) trees.  Remote sensing offers an efficient option to assess rangelands while reducing 

ground sampling measurements.  High-spatial resolution color-infrared imagery (0.06-m pixels) was 

acquired for sagebrush steppe communities invaded by pinyon-juniper trees at five sites in Oregon, 

California, Nevada, and Utah with a Vexcel UltraCam X digital camera in June/July 2009.  Ground cover 

measurements were also collected in 2009 on 30x33 m subplots as part of the Sagebrush Steppe 

Treatment Evaluation network.  To georeference ground subplots onto the aerial imagery, global 

positioning system (GPS) points were collected at the center and northwest corner of each ground 

subplot; subplots were then extracted for image processing and analysis.  We used Trimble eCognition 

Developer 8 to 1) develop an efficient method to estimate land cover classes found in pinyon-juniper 

woodlands, and 2) to determine the relationship between ground measurements and object-based 

image analysis (OBIA) land cover measurements for the following classes:  live trees, shrubs, perennial 

herbaceous vegetation, litter (including annual species), and bare ground.  OBIA classification means 

ranged from underestimating litter by 3% to overestimating live trees by 1% when compared to ground-

based measurements.  Overall accuracy for our thematic maps was 84% with a kappa statistic of 0.80, 

indicating strong agreement between OBIA classification and ground measured data.    Correlations 

between OBIA and ground measurements were relatively high for live trees (r =0.94), bare ground (r 

=0.90), shrubs (r =0.88), and perennial herbaceous vegetation (r=0.79).  Although cover assessments 

varied slightly between OBIA and ground-based measurements, they represent an accurate landscape-

level assessment for applications used by land managers.     

Keywords 

eCognition, remote sensing, pinyon-juniper woodlands, SageSTEP, object-based image analysis.   
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1. Introduction 

Landscape management agencies inventory and monitor rangelands across broad and heterogeneous 

landscapes.  Many of these lands in the western United States are converting from sagebrush steppe 

communities into pinyon (Pinus) and juniper (Juniperus) (P-J) woodlands as trees invade and infill (Miller 

et al., 2000; Miller & Tausch, 2001; Romme et al., 2009; Tausch, 1981).  Increased tree dominance 

typically results in the loss of understory plant community structure and composition and an associated 

decline in ecological function across these heterogeneous landscapes (Miller et al., 2000).  On sites with 

high soil erosion potential, loss of understory cover can result in accelerated soil erosion rates, greater 

runoff, and increased soil hydrophobicity (Madsen et al., 2011; Petersen & Stringham, 2008; Pierson et 

al., 2010; Roundy & Vernon, 1999).  An increase in tree canopy cover and biomass associated with 

lengthened fire return intervals within these communities can also increase the potential for intensive 

crown fires (Miller & Tausch, 2001).   

 

Accurate assessment of understory and overstory cover within expansion woodlands is needed to 

properly time fuel reduction treatments to restore ecological function and resilience (Miller et al., 2005; 

Tausch et al., 2009).  Remote sensing can offer an efficient alternative to assess these rangelands with 

reduced monitoring costs (Booth et al., 2008; Booth & Tueller, 2003; Hunt et al., 2003; Tueller, 1989), 

and more complete and representative measurements across a landscape than from ground-based 

measurements alone (Booth et al., 2005; Tueller, 1996).  Object-based image analysis (OBIA) techniques 

that group similar, neighboring pixels into distinct image objects within designated parameters (Burnett 

& Blaschke, 2003; Ryherd & Woodcock, 1996), have shown success in describing landscape patches 

evaluated with high-resolution imagery  (Karl & Maurer, 2010; Laliberte et al., 2004; Laliberte et al., 

2010;  Yu et al., 2006).  However, remotely-sensed image research for shrub steppe communities 
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encroached with P-J woodlands is limited (Davies et al., 2010; Madsen et al., 2011; Sankey & Glenn, 

2011; Weisberg et al., 2007; Yang et al., 2012).   

 

Our objective is to test the accuracy of OBIA cover measurements from high-spatial resolution imagery 

(0.06-m pixels) relative to ground-based measurements within P-J expansion woodlands.  We propose 

that cover estimates from high-resolution remotely sensed imagery and Trimble eCognition Developer 

image analysis is sufficiently similar to ground measurements for accurately assessing P-J woodland 

cover.  

 

2. Methods 

2.1. Study Area 

Our study includes five pinyon and/or juniper woodlands located in 4 western US states (Oregon, 

California, Nevada, and Utah) that are associated with the Joint Fire Sciences Sagebrush Steppe 

Treatment Evaluation Project (SageSTEP; Fig. 1).  The five sites are referred to as Blue Mountain (BM), 

Devine Ridge (DR), Marking Corral (MC), Stansbury (ST), and Onaqui (ON).  Site characteristics have been 

described by McIver et al. (2010).  We selected sites that represented all phases of woodland 

encroachment (Miller et al., 2005) and exhibited a substantial understory shrub component.  These sites 

provided us with a wide range of semi-arid woodland types with the following most common vegetation: 

western juniper (Juniperus occidentalis; BM, DR); Utah juniper (Juniperus osteosperma; MC, ON, ST); 

singleleaf pinyon (Pinus monophylla; MC); mountain big sagebrush (Artemisia tridentata ssp. vaseyana; 

BM, DR, ST); Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis; MC, ON); Idaho fescue 

(Festuca idahoensis; BM, DR); bluebunch wheatgrass (Pseudoroegneria spicata; BM, MC, ON, ST); and 
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Indian ricegrass (Achnatherum hymenoides; MC, ON).  Cheatgrass (Bromus tectorum) is present on all 

sites with a wide range of density and cover values.    

 

2.2. Ground Measurements 

Ground data was collected by the SageSTEP team during the summer of 2009 on 80, 0.1-ha subplots (30 

x33 m) found within larger study plots (5-20 hectares).  Cover measurements were collected within 

subplots using the line-point intercept method (Canfield 1941) on five, 30-m transects placed 

systematically across the subplot (McIver et al 2010).  First contact intercept data (top vegetation 

canopy or ground surface) was collected every 0.5 -m totaling 60 points per transect or 300 points per 

subplot.  This same area represents the aerial view captured in each remotely-sensed image.   

Measurements used in the data analysis from the line-point intercept method included shrubs, forbs, 

grasses, litter, standing and down woody debris, and ground surfaces (mineral soil, rock, lichen or moss) 

cover estimates.  Tree cover used in the data analysis was measured using the crown-diameter method 

(Mueller-Dombois and Ellenberg 1974).    

 

2.3. Acquisition of Imagery 

Color-infrared (red, green, blue, and infrared) imagery was acquired for all sites in late June to early July 

2009 with a Vexcel UltraCam X digital camera (Vexcel Imaging GmbH, Graz, Austria) on board a 

turbocharged Cessna 206 aircraft.  The camera was equipped with forward motion compensation, 

airborne GPS capabilities and an ApplAnix inertial measurement unit (IMU).  Imagery was processed to 

meet or exceed national map accuracy standards using software created by the Vexcel/Microsoft digital 

imaging partnership by Aero-graphics, Inc., Salt Lake City, Utah.  Imagery collection time was based on 

phenological vegetation characteristics found within the Great Basin; in late June/early July, perennial 
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grasses typically approach maximum yearly growth and annual grasses have begun to senesce, ideally 

providing spectral differences between perennial and annual plants in the aerial imagery.     

 

2.4. Subplot Extraction 

Global positioning system (GPS) points were collected using a GPSmap® 60CS unit in the center and 

northwest corner of each of the 80, 0.1-ha subplots, to georeference subplots on collected imagery.  

Although the true image location may have some inaccuracies due to GPS readings, subplot shifts were 

estimated to be within 1-2 m of the field-based subplots.  Individual subplots were then extracted from 

landscape scenes so that measurements would be made on the same experimental unit for both OBIA 

and ground-measured cover classes.   

 

2.5. Image Processing (eCognition) 

For our object-based image analysis we used eCognition Developer 8.64 (Trimble Germany GmbH, 

Munich, Germany) (Fig. 2).  eCognition allows the user to create rule sets or process trees to classify 

image objects into meaningful land cover classes by outputting hundreds of features (spectral, spatial, 

textural, and contextual information) that describe image objects created during the segmentation 

process (Benz et al., 2004; Frohn & Chaudhary, 2008; Laliberte et al., 2007). Process trees were 

developed from an initial subset of the total subplots (training subplots; 12% of the total number of 

subplots) to determine object features and thresholds that would identify land cover classes.  

Thresholds associated with object features were adjusted to optimize the remotely-sensed cover 

estimates with the ground reference cover data within an acceptable measure of error of ± 5%, 

depending on land cover class.  Training subplots were selected that captured the greatest amount (or 

degree) of variation between land cover classes found within the site.  Once the process tree was 
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developed from the training subplots, the designated features and thresholds were applied to the 

secondary subset of subplots (validation subplots; 88% of the total number of subplots) for data analysis.   

 

Using the training subplots, multiple classification trials were performed to extract cover data.  We 

found that our data extracted from the relatively high-spatial resolution imagery was obscured by 

extraneous information (Karl & Maurer 2010). Therefore, our process trees were developed for each 

research site by initially reducing the complexity of the data by using both a convolution and median 

filter on the original RGB bands.  For the convolution filter, we used the Gauss Blur formula to remove 

noise and detail from the imagery (Trimble, 2011).  The median filter used an algorithm that replaced 

the pixel value with the median value of neighboring pixels which typically preserves more image detail 

than a mean filter (Trimble, 2011).   

 

Once our imagery was filtered, we used a multiresolution segmentation algorithm embedded in the 

eCognition Developer software to create our objects using the convolution filtered data.  The 

multiresolution segmentation algorithm has been successfully applied in numerous studies (Frohn & 

Chaudhary, 2008; Karl, 2010; Karl & Maurer, 2010; Ko et al., 2009; Laliberte et al., 2007a & b; Laliberte & 

Rango, 2009; Lucas et al., 2007; Tian & Chen, 2007) and is a bottom-up segmentation algorithm based 

on a pairwise region merging technique; it minimizes the average heterogeneity and maximizes object 

homogeneity (Trimble, 2011) essentially capturing patterns of interest.  Through the visual assessment 

of the segmentation results and several iterative classification trials, scale, shape and compactness 

parameters were determined that best represented land cover classes (Table 1) of interest for this 

particular study.   Following the multiresolution segmentation, a spectral difference segmentation 

algorithm was applied that merged neighboring image objects according to their mean image layer 

intensity values (Trimble, 2011), visually refining our objects into more representative land cover classes.   
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Following segmentation, classification of the homogeneous objects were explored using training 

samples for each land cover class.  One of the strengths of eCognition is that process trees have a 

hierarchical approach (Lucas et al., 2007), which essentially removes objects that have been classified 

from further analysis of unclassified objects.  Utilizing this hierarchical approach, multiple classification 

features and thresholds were investigated to determine which represented ground reference data most 

accurately, which had the highest overall classification accuracy of the thematic map produced, and 

what hierarchical order of land cover classes should generally be classified for each specific site.  Often, 

multiple combinations of features were used to classify land cover classes.  Spectral information 

included: mean layer intensity values for RGB bands (mean value, brightness and maximum difference), 

pixel based values within image objects (band ratios), normalized difference vegetation index (Rouse et 

al., 1973), soil adjusted vegetation index (Huete, 1998), and Hue, Saturation, Intensity (HSI) 

transformations (including HSI transformation using median filtered RGB bands).  Contextual 

information or class-related features consisted of relative borders (neighboring objects) that were most 

often used to expand land cover classes to adjacent unclassified objects.  Area (number of pixels within 

object) of classified objects was the only spatial feature utilized in this study.  No textural information 

was used for the classification due to our segmentation size restrictions.  Cover was measured from 

imagery by calculating total area of land cover class divided by total area of subplot.   

 

2.6. Statistical Analysis 

To determine whether the mean value responses were different between the remotely-sensed data and 

ground-reference data, we used a paired t-test for each land cover class.  Results from the paired t-test 

were evaluated for significance using the Bonferroni correction (p < 0.05/5). Statistical assumptions for 

normality and variance were assessed.  Mean difference values for each land cover class by site were 
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compared using one-way ANOVA and the Tukey-Kramer honestly significant difference multiple 

comparison method with a significance level of p < 0.05.  Ground measurements, which are considered 

to be correct, were always subtracted from estimates derived from OBIA, to determine if OBIA 

consistently overestimated or underestimated the land cover class of interest.  To assess the 

relationship between ground-reference data and OBIA data, a simple linear regression model was used.  

These regression models only apply within the context of the data set from which they are derived.     

 

2.7. Accuracy Assessments 

Accuracy assessments were conducted on classified thematic maps for each site to determine the 

statistical reliability of classified data using ERDAS Imagine 11.0 software (ERDAS Inc., Atlanta, GA).  For 

each cover type, we used a stratified random approach to generate 35 points per cover class 

(Congalton, 2001) for the 5-6 cover classes found at each of the five sites.  This was repeated for 3 

subplots per site totaling 15 subplots evaluated (N = 4,228 points; Table 4).  An error matrix was then 

populated by summing the totals from all sites, followed by the calculation of producer’s accuracy 

(omission error), user’s accuracy (commission error), overall accuracy, conditional Khat coefficient of 

agreement, and Khat coefficient of agreement (Jensen, 2005). 

 

3.  Results and Discussion 

Live trees, shrubs, and perennial herbaceous vegetation measurements did not differ between OBIA and 

ground-measurement methods across all sites (Table 2).  When individual sites were analyzed, there was 

a significant difference for live tree measurements at the Stansbury site (p = 0.0013), where OBIA 

overestimated cover by 3% when compared to the ground measurements (Table 3).  Live tree ground 

measurements were collected for all trees rooted within the subplot.  With our OBIA technique, it was 
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difficult to distinguish what was rooted within or outside the subplots and may have contributed to 

differences between methods.   

 

Differences in shrub cover estimates between the two methods did not differ among sites (Table 3).  

However, trees were most often misclassified as shrubs (Table 4), especially on western juniper sites 

(BM and DR).  Tausch et al., (unpublished data) found that when Utah juniper and western juniper trees 

average the same height, Utah juniper trees average up to three times the foliage biomass of western 

juniper trees.  Consequently, Utah juniper image objects were more compact with minimal variations in 

spectral reflectance values.  Western juniper image objects were less compact and often exhibit 

numerous spectral reflectance values that were very similar to other vegetation types, particularly 

antelope bitterbrush in our imagery. 

 

Litter and bare ground cover differed significantly (litter p = 0.0006; bare ground p = 0.0095) between 

the OBIA and ground-measurement methods across all sites (Table 2).  OBIA estimates for both land 

cover classes were on average 2-3% less than ground measurements.  When individual sites were 

analyzed, Devine Ridge was the only site where OBIA estimates were 2.3% more than the ground 

measured bare ground cover (Table 3).  The bare ground land cover class was composed of >90% 

mineral soil at all sites except for Devine Ridge, where mineral soil comprised 70% with rock (>5 mm) 

comprising 24% (Table 1).  The soil adjusted vegetation index was used to classify bare ground cover and 

may have a substantial spectral difference for rocks versus the mineral soil at this site for our collected 

imagery.   

 

Cover estimates from OBIA and ground measurements were highly correlated across all sites for live 

trees (r = 0.95), bare ground (r = 0.90), shrubs (r = 0.88), and perennial herbaceous vegetation (r = 0.80) 
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(Fig. 3).  Litter cover correlation between OBIA and ground measurements were low compared to other 

cover classes (r = 0.53).  OBIA litter cover estimates were on average 3% lower than ground 

measurements which is likely due to shadows found within the imagery from overstory vegetation.   

 

Across all sites and land cover classes overall accuracy was 84%, with a kappa statistic of 0.80 (Table 4) 

indicating a strong agreement between the OBIA classification and the reference data (Landis & Koch, 

1977).  Live trees had the highest conditional Khat coefficient of agreement (0.92) which is expected since 

trees are the largest vegetation type with little interference from understory vegetation.  Interestingly, 

there is a dissimilarity between the producer’s (82%) and user’s (94%) accuracies for live trees that 

suggests omission errors (how well a live tree can be classified) were higher than commission errors 

(probability that a sample classified on the image actually represents a live tree) (Congalton, 2001).   

These differences are also reflected in the minimum and maximum difference between the OBIA and 

ground measurements for live trees (-10.6 – 14.7% cover; Table 4), that may average out across a 

landscape but, may be substantially different on a subplot scale.  Although filters were used to reduce 

heterogeneity found within objects, the combination of less tree foliage around the perimeter of the 

canopy and increased light reflecting off the soil through foliage, increased our inaccuracies for correctly 

classifying tree canopy edges.   

 

The use of high-resolution imagery across multiple sites within the Great Basin allowed us to evaluate 

differences in classification accuracy between tree species (Table 5).  At the Marking Corral site, we 

were able to differentiate between Utah junipers and singleleaf pinyon trees that were dispersed 

throughout the subplots using a hue transformation parameter on our median filtered RGB bands.  

Although species were combined for mean comparison, results from the accuracy assessment of these 
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tree species have a conditional Khat coefficient of agreement of 0.88 for Utah juniper and 0.85 for 

singeleaf pinyon.   

 

Differentiating shrubs into species was feasible with our high-resolution imagery when species ground 

cover was more than 5% of the total ground cover.  BM, DR, and ST had both sagebrush species and 

antelope bitterbrush dispersed throughout the subplots.  At these sites, sagebrush species averaged 48% 

and antelope bitterbrush averaged 38% of the total shrub composition.  Sagebrush had similar 

producer’s and user’s accuracy; however, antelope bitterbrush accuracies were dissimilar suggesting 

that antelope bitterbrush is misclassified more than sagebrush (Table 5). Among all of our sites, 

Stansbury had the lowest accuracy for separating shrubs into species.  This was likely due to an overlap 

in shrub species growth patterns among sagebrush and bitterbrush.  Using eCognition techniques to 

merge and combine adjacent objects with one another, it is likely that interspersed vegetation was 

classified as the more dominate species for one particular area.   

 

Other life forms (grasses and forbs) were not distinguished by species and, as reported by Laliberte et al. 

(2010), forbs could not be distinguished from grasses.  Therefore these life forms were combined to 

compose one perennial herbaceous vegetation cover class.  Targeted phenological timing of imagery 

collection allowed us to distinguish annual from perennial life forms rather well.  However, we were not 

able to distinguish litter from annual species (Table 1), particularly cheatgrass.  This is likely due to the 

size of cheatgrass patches and the pixel resolution of our imagery.  Jensen (2005) suggests a heuristic 

rule of thumb that in order to detect a feature, the nominal spatial resolution of the sensor system 

should be less than one-half the size of the feature measured in its smallest dimension.  Cheatgrass 

typically composed less than 10% of the total litter composition (Table 1) and was often dispersed 

throughout the subplots as individual shoots instead of larger bunches.   
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4. Conclusions 

Our results indicate that object-based image analysis can produce accurate estimates for designated 

land cover classes.  The averaged means from the OBIA cover analysis across the landscape is within 3% 

of the ground measured cover. Although the classification may have limitations (i.e. quantifying litter 

cover for individual subplots), when averaged across the landscape it is sufficiently accurate in 

quantifying land cover classes to be of major use in land management.  

 

The lower correlation values for land cover classes with a high kappa statistic may be attributed to 

several discrepancies between OBIA and ground quantifications.  Use of two GPS points to extract 

subplots from imagery may result in subplot shifts that result in dissimilar subplot comparisons between 

image and ground measurements.  Estimates of litter and smaller vegetation cover classes could 

especially be sensitive to subplot-shift differences.  Also, line-intercept measurements on the ground 

may not adequately represent the entire subplot (Davies et al., 2010) whereas, with the aerial imagery 

every object is assigned to a class.  In addition, in the image analysis, perennial herbaceous vegetation, 

litter, and bare ground can be obscured by shadows from larger woodland species such as sagebrush 

and juniper trees.  Shadows within vegetation canopies (i.e. juniper trees) can be calculated correctly 

through merging or combining neighboring classified objects.  Perennial herbaceous vegetation, litter, 

and bare ground land cover classes however, found within a shadow were often misclassified or 

classified into a separate shadow category.  Shadows ranged from 2-6% cover of the total subplot 

imagery for our study which likely contributed to the overall underestimation of these land cover classes 

when compared to our ground measurements.   
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Although species level classification varies in accuracy, remote sensing can aid land managers in 

prioritizing preventative management practices (Bestelmeyer, 2006) instead of focusing on restoration 

efforts.  Remote sensing provides an opportunity for more timely measurements than ground-based 

measurements.  This may allow detection of areas experiencing small shifts in land cover, such as 

increases in patches of weed dominance.  Management actions such as site-specific weed control could 

be implemented before catastrophic shifts occur (Hunt, et al., 2004; Shaw, 2005; Thorp & Tian, 2004).   

As another example, repeated aerial photography could be used to assess bare ground patch size and 

connectivity and signal when to implement vegetation treatments to prevent rilling and the crossing of 

an erosion threshold (Booth & Tueller, 2003; Davenport et al., 1998; Pyke et al., 2002).  

 

Our data suggest that remote sensing of land cover classes such as live trees, shrubs, and bare ground 

could reduce field data collection for monitoring and assessments, therefore enabling monitoring on a 

much larger extent than is currently practiced.  By utilizing aerial imagery and object-based image 

analysis techniques, land managers can move in the direction of “addressing the inadequacies of 

conventional rangeland monitoring” (Booth et al., 2008).  The methods used in this study show that 

aerial imagery does have the potential to complement and even replace some ground measurements 

for evaluating rangeland health and determining when to implement vegetation treatments on a 

landscape scale.   
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Tables 

 

Table 1.  Land cover class descriptions that were used in the study.    
Land cover 
class Description             

Live Trees* Live tree cover includes Utah juniper (ON, ST, and MC), western juniper (BM and DR), and 
singleleaf pinyon (MC). 

Shrubs* Dominant shrub cover includes sagebrush (all sites), antelope bitterbrush (BM, DR, and ST), 
and dead shrubs.  Yellow rabbitbrush (Chrysothamnus viscidiflorus) and other small non-
dominant shrubs could not confidently be distinguished from bunchgrasses and forbs so were 
included as part of the perennial herbaceous cover class. 

Perennial 
Herbaceous 
Vegetation 
(Per Herb) 

Native perennial herbaceous vegetation cover includes the following dominant species: Idaho 
fescue (BM and DR), Sandberg bluegrass (all sites), bluebunch wheatgrass (MC, ON, and ST), 
Thurber's needlegrass (DR and MC), and needle and thread grass (MC). 

Litter Litter cover consists of non-living plant or animal material that rests on top of the soil surface 
including detached woody material.  Also includes annual species, particularly cheatgrass 
which typically comprises <10% of the total litter composition with the exception of 
Stansbury, where cheatgrass comprises approximately 20% of the litter cover class. 

Bare Ground Bare ground cover is primarily composed of mineral soil (>90 %) and rock with <3% lichen or 
moss.  Devine Ridge is the only exception where bare ground is comprised of 70% mineral soil 
and 24% rock. 

* indicates species classifications 
Site codes: Blue Mountain (BM), Devine Ridge (DR), Marking Corral (MC), Onaqui (ON), Stansbury (ST).   
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Table 2.  Comparison of land cover classes mean percent 
cover estimates from object-based image analysis and 
ground-measured data using a paired t-test (N = 71 
subplots). 

Land cover 
class p-value 

Mean 
Difference    
(% Cover) 

95% CI        
(% Cover) 

Live Trees 0.0628 1.09  -0.06-2.23 
Shrubs 0.7083 0.20  -0.85-1.24 
Per Herb 0.1706 0.78  -1.90-0.34 
Litter 0.0006* -2.87  -4.46--1.28 
Bare Ground 0.0095* -2.06  -3.61--0.52 
Per Herb = Perennial herbaceous vegetation 
CI = Confidence interval 
* indicates significant differences between image analysis and ground 
sampling mean values using the Bonferroni correction (p < 0.01). 
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Table 3.  (A) Summary statistics for land cover classes by site for object-based image analysis (OBIA) and ground-
measurement sampling (Gnd) methods.  (B) Comparison statistics between site average cover mean differences.  
Differences are calculated by subtracting Gnd cover means from OBIA cover means.  

 

(A)         (B)         

Cover Type Sitet Method 
Mean        

(% Cover) SE 
Range       

(% Cover) Sitet 

Average Mean 
Difference        
(% Cover) SE 

Mean Difference 
Range              

(% Cover) N 

Live Trees BM OBIA 28.33 2.66 10.8-46.2 BM 1.51a 1.36  -10.6-14.7 12 
Gnd 26.83 2.59 17.0-42.3 DR 1.44a 1.26  -8.4-9.3 14 

DR OBIA 25.19 3.1 8.0-47.6 MC  -1.9a 1.36  -7.8-7.7 12 
Gnd 23.75 3.6 1.7-46.3 ON 0.78a 1.11  -7.0-4.9 18 

MC OBIA 34.5 5.42 8.6-64.8 ST 3.17a 1.22  -2.8-8.8 15 
Gnd 36.39 6.16 7.6-72.6 

ON OBIA 15.84 1.75 4.4-28.9 
Gnd 15.06 1.8 3.2-30.8 

ST* OBIA 28.03 3.48 8.4-50.7 
Gnd 24.87 3.58 8.2-50.0 

Shrubs BM OBIA 13.8 1.14 8.1-19.7 BM 3.59a 1.21  -7.5-8.6 12 
Gnd 10.22 1.63 2.3-21.6 DR  -0.73ab 1.12  -5.9-4.6 14 

DR OBIA 7.86 1.68 1.6-25.2 MC 0.24ab 1.21  -4.2-5.7 12 
Gnd 8.59 1.42 2.0-22.7 ON 0.13ab 0.99  -6.3-9.4 18 

MC OBIA 6.74 1.55 1.2-19.5 ST  -1.61b 1.08  -8.7-4.1 15 
Gnd 6.5 1.33 0.0-14.4 

ON OBIA 10.47 1.65 0.7-22.7 
Gnd 10.34 1.08 1.3-18.3 

ST OBIA 19.55 3.46 0.8-37.7 
Gnd 21.16 3.3 3.3-41.9 

Perennial 
Herbaceous 
Vegetation 

BM OBIA 15.18 1.93 7.8-28.8 BM  -1.59a 1.35  -8.4-9.4 12 
Gnd 16.8 1.05 12.0-24.2 DR  -0.74a 1.25  -8.8-3.8 14 

DR OBIA 10.84 1.84 2.2-27.7 MC  1.32a 1.35  -6.4-7.7 12 
Gnd 11.58 1.74 1.9-26.5 ON  -2.29a 1.11  -10.5-4.8 18 

MC OBIA 10.85 2.04 4.5-23.8 ST  -0.02a 1.21  -9.3-8.9 15 
Gnd 9.53 1.69 2.0-21.7 

ON OBIA 11.39 1.11 3.6-19.4 
Gnd 13.68 1.77 4.8-27.0 

ST OBIA 20.96 1.29 13.1-31.5 
Gnd 20.97 2.10 7.7-30.5 

Litter BM OBIA 13.24 0.68 10.2-17.7 BM  -3.21a 1.86  -20.1-5.4 12 
Gnd 16.46 1.73 9.6-32.6 DR  -2.66a 1.72  -11.4-6.0 14 

DR OBIA 16.44 2.16 7.4-30.6 MC  -4.59a 1.86  -14.6-7.3 12 
Gnd 19.1 2.07 4.5-33.3 ON 0.39a 1.52  -11.5-9.6 18 

MC OBIA 8.24 1.27 2.1-16.2 ST  -4.29a 1.66  -11.7-6.0 15 
Gnd 14.13 3.42 0.0-30.0 

ON OBIA 18.36 0.63 14.2-22.6 
Gnd 17.98 1.45 7.3-33.4 

ST* OBIA 13.59 1.11 4.5-20.1 
Gnd 17.88 0.8 10.3-23.0 

Bare Ground BM OBIA 18.87 2.08 9.2-31.6 BM  -1.06ab 1.75  -7.2-5.9 12 
Gnd 19.93 1.18 12.3-25.7 DR 2.25a 1.62  -6.4-14.0 14 
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DR OBIA 30.29 3.61 10.6-53.4 MC  -2.65ab 1.75  -11.0-3.3 12 
Gnd 28.04 3.39 10.7-56.0 ON  -6.02b 1.43  -14.5-10.4 18 

MC OBIA 36.24 3.05 16.1-50.4 ST  -1.67ab 1.56  -12.5-8.8 15 
Gnd 38.89 3.43 16.7-55.0 

ON* OBIA 40.2 1.81 28.3-54.4 
Gnd 46.22 2.21 29.0-62.3 

ST OBIA 15.01 2.07 4.1-30.5 
    Gnd 16.69 2.30 6.7-31.0           

SE = standard error; N = subplots sampled 
t Blue Mountain (BM), Devine Ridge (DR), Marking Corral (MC), Onaqui (ON), Stansbury (ST).   

Average mean differences with different letters within land cover class are significantly different (p < 0.05) using Tukey-Kramer honestly significant 
difference multiple comparison procedure.  
* Indicates a significant difference (Bonferroni correction p < 0.01) between the two methods for that site using the paired t-test.  
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Table 4.  Contingency table comparing classification accuracy for 
land cover classes across all sites. 

Land cover classes 
Live 

Trees Shrubs 
Per 

Herb Litter 
Bare 

Ground 

Live Trees  744 14 13 16 6 

Shrubs  81 830 54 37 24 

Per Herb 38 26 561 40 18 

Litter 35 24 62 803 70 

Bare Ground 7 13 43 54 615 
Producer's accuracy 82% 92% 77% 85% 84% 

User's accuracy 94% 81% 82% 81% 84% 

Conditional Khat  0.92 0.76 0.78 0.75 0.81 

Overall accuracy = 84%     Khat = 0.80     N = 4,228   

Per Herb = Perennial herbaceous vegetation 
Khat = Coefficient of Agreement (Kappa statistic); N = number of points evaluated 
Bold values indicate correct number of points classified within a land cover class.   
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Table 5.  Species specific producer's and user's accuracy and 
conditional Khat coefficient of agreement.   

Land Cover Class 

Producer's 
accuracy 

User's 
accuracy 

Conditional 
Khat 

Utah Juniper 83% 90% 0.88 

Western Juniper 79% 97% 0.96 

Singleleaf Pinyon 83% 88% 0.85 

Sagebrush ssp. 79% 82% 0.79 

Antelope Bitterbrush 96% 75% 0.72 
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Figures 

 

  

Fig. 1.  Study site locations (circles) across the Great Basin overlaid on  
imagery obtained from ArcGIS online basemap gallery. 
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Fig. 2.  Example of a juniper subplot RGB image at the onaqui Utah site (A), and the classification results 
using object-based image analysis (B).  Individual land cover classification colors are shown that 
represent live trees (C; green), shrubs (D, blue), perennial herbaceous vegetation (E, orange),  
litter (F, pink), bare ground (G, yellow), and shadows (H, gray). 
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Fig. 3. Regressions of percent cover estimates from an object-based image analysis (y-axis) on 
ground-reference cover (x-axis) using subplots for all study sites for (A) live trees, (B) shrubs, (C) 
perennial herbaceous vegetation, (D) litter, and (E) bare ground.   
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Abstract 

Mechanical and prescribed fire treatments are commonly used to reduce fuel loads and maintain or 

restore sagebrush steppe rangelands across the Great Basin where pinyon (Pinus) and juniper (Juniperus) 

trees are encroaching and infilling.  Geospatial technologies, particularly remote sensing, could 

potentially be used to: 1) evaluate the longevity of these treatments, 2) prioritize maintenance for 

treatments, 3) increase land managers understanding of the spatial distribution and cover of fuels 

following treatment, and 4) provide valuable data for planning and designing future fuel-reduction 

treatments.  High-spatial resolution color-infrared imagery (0.06-m pixels) was acquired for pinyon and 

juniper woodlands plots where fuels were reduced by either prescribed fire, tree cutting, or mastication 

at five sites in Oregon, California, Nevada, and Utah.  Imagery was taken with a Vexcel UltraCam X digital 

camera in June/July 2009.  Within each treatment plot, subplots (30x33 m) were measured on the 

ground in 2009 using the line-point intercept method as part of the Sagebrush Steppe Treatment 

Evaluation Project.  Trimble eCognition Developer 8 was used to classify land cover class (live, burned, 

cut, and masticated trees, shrubs, perennial herbaceous vegetation, litter, and bare ground) using 

object-based image analysis (OBIA) techniques.  Results from the OBIA and ground measurements were 

then evaluated to determine the relationship between the two methods.  Differences between mean 

cover estimates using OBIA and ground-measurements were not consistently higher or lower for any 

land cover classes and when evaluated for individual sites, were within ± 5% of each other.  Correlations 

of cover between the two methods were high (r = 0.77—0.96) for most land cover classes.  Correlations 

were lower for cover of masticated debris (r = 0.73), and shrub cover in the prescribed burn treatment (r 

= 0.55).  The overall accuracy and the kappa statistic for classified thematic maps for each treatment 

were: prescribed burn 85% and 0.81; cut and fell 82% and 0.77, and mastication 84% and 0.80.  

Although cover assessments from OBIA differed somewhat from ground measurements, they are 



www.manaraa.com

33 
 

sufficiently accurate to evaluate treatment success and assess the spatial distribution of fuel following 

fuel-reduction treatments.   

 

Keywords 

eCognition, object-based image analysis, prescribed burn, tree cutting, mastication, pinyon-juniper 
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1. Introduction 

Risks and uncertainties associated with the management of shrub steppe communities, particularly 

those where pinyon (Pinus) and juniper (Juniperus) trees (PJ) are invading and infilling (Romme et al., 

2009), are complex and vary across time and space.  Geospatial technologies, such as remote sensing 

are a logical approach for acquiring appropriate information to design and plan adaptive management 

practices over large areas in short time periods (Booth & Tueller, 2003; Boyd & Svejcar, 2009), and on 

specific sites where management treatments will achieve long-term objectives (Weisberg et al., 2007).  

High-resolution imagery from remote sensing can be used to rapidly evaluate cover variables of PJ 

woodland communities prior to implementing fuel reduction treatments (Hulet et al., in review). 

However, limited research has been conducted to evaluate the potential use of these technologies to 

assess cover after fuel reduction treatments.   

 

Fuel reduction treatments, such as prescribed burns, chainsaw cutting , mastication, or a combination of 

treatments are commonly used across the Great Basin in PJ woodlands to decrease woody fuels and to 

maintain or restore sagebrush ecosystems (Bates, et al., 2000; Bates & Svejcar, 2009; McIver et al., 2010; 

Miller et al., 2005; Tausch et al., 2009).  These treatments are designed to remove trees and promote 

understory growth, but may be limited in their effects if trees are incompletely burned, cut, masticated 

or re-establish from seeds (Archer & Stokes, 2000; Bates et al., 2005; Chambers et al., 1999; Tausch & 

Tueller, 1977).  Remote sensing offers an option to evaluate the longevity of fuel-reduction treatments 

on a large scale and to prioritize maintenance treatments on residual or reestablishing trees to sustain 

more balanced and functional landscapes.    

 

Fuel reduction treatments also vary in immediate effectiveness.   Reduction of woody fuels by 

prescribed fire is highly dependent on the heterogeneity of the landscape and weather conditions 
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during implementation (Fernandes & Botelho, 2003).  Mechanical treatments such as cut and drop are 

effective in removing tree canopy fuels but increase surface fuels (Schwilk et al., 2009).  By altering fuel 

structure and patterns through various treatments, wildland fire behavior is modified (Agee & Skinner 

2005; Cram et al., 2006; Fernandes & Botelho 2003; Finney 2007).  Although remote sensing has 

limitations in describing biomass, size, and bulk density of fuels (Arroyo et al., 2008; Keane et al., 2001), 

its use to accurately classify fuel cover could complement field-based measurements for evaluating fire 

hazard and risk.  

 

This study was conducted to assess the relationship between object-based image analysis and field-

measured land cover classes found in PJ woodlands after implementation of fuel-reduction treatments 

(prescribed fire, cut and fell, and mastication).  We propose that OBIA cover estimates from high-

resolution imagery will be sufficiently similar to ground measurements to accurately assess the spatial 

distribution and cover of vegetation, bare ground, litter, and down woody debris resulting from the 

prescribed burn and mechanical treatments.   

 

2. Methods 

2.1. Study Area 

We conducted our study on five pinyon/juniper woodlands treated to reduce fuels as part of the Joint 

Fire Sciences Sagebrush Steppe Treatment Evaluation Project (SageSTEP).  Sites include Blue Mountain 

(41°49’N 120° 53’W), Devine Ridge (43°42’N 118°57’W), Marking Corral (39°28’N 115° 07’W), Onaqui 

(40°13’N 112°28’W) and Stansbury (40°34’N 112°39’W). Site area ranged from 5-20 hectares.  Detailed 

descriptions of each plot are described by McIver et al. (2010).  Fuel reduction treatments included 

prescribed fire and mechanical cut and fell at all sites, with an additional mastication treatment on the 
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Utah sites.  Treatments were implemented at the Marking Corral and Onaqui sites in summer and fall 

2006. Blue Mountain, Devine Ridge, and Stansbury were treated fall 2007.  Prescribed burn treatments 

generally resulted in a patchy burn across the treatment plots.  Follow-up ignition was used to ensure 

that >70% of the area of individual subplots was burned.  The cut treatment consisted of cutting all 

trees > 0.5 m in height and dropping them perpendicular to the slope where possible.  The mastication 

treatment consisted of shredding all trees in place with a rotating drum armed with carbide teeth.  

Further treatments details are given by McIver et al. (2010). 

 

2.2. Ground Measurements 

Ground data was collected during summer 2009 on 86 prescribed burn, 82 mechanical cut and fell, and 

31 masticated 0.1-ha subplots (30x33 m).  Cover measurements were collected within subplots using the 

line-point intercept method (Canfield 1941) on five, 30-m transects placed systematically across the 

subplot (McIver et al 2010). First contact intercept data (top vegetation canopy or ground surface) was 

collected every 0.5-m totaling 60 points per transect or 300 points per subplot, which represents the 

aerial view captured in the imagery.  Cover data used in the analysis from the line-point intercept 

method included live trees, burned trees, cut trees, masticated debris, shrubs, forbs, grasses, litter, 

standing and down woody debris, and ground surfaces (mineral soil, rock, lichen or moss).    

 

2.3. Acquisition of Imagery 

Color-infrared (red, green, blue, and infrared) imagery was acquired for all treatment plots in late June 

to early July 2009 with a Vexcel UltraCam X digital camera (Vexcel Imaging GmbH, Graz, Austria) on 

board a turbocharged Cessna 206 aircraft.  Imagery was processed to meet or exceed national map 

accuracy standards using software created by the Vexcel/Microsoft digital imaging partnership by Aero-
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graphics, Inc., Salt Lake City, Utah.  Timing of imagery was selected to capture phenological differences 

between perennial and annual vegetation.  Ground-measured subplots were extracted from the 

landscape imagery for each treatment using subplot extraction techniques described in Hulet et al. (in 

review).    

 

2.4. Image Processing  

We used eCognition Developer 8.64 (Trimble Germany GmbH, Munich, Germany) for our object-based 

image analysis.  We developed rule-sets for each treatment using an initial subset of the total subplots 

(training subplots).  Training subplots were selected to capture the variation in cover found across 

treatment plots within each site; training subplots consisted of 10% of the total number of subplots for 

the prescribed burn plots, 18% for the mechanical cut and fell, and 19% for the mastication plots.  The 

number of training subplots varied among treatments due to variations found within individual sites and 

size of treatment plots.    

 

 We used the multiresolution segmentation algorithm described by Hulet et al. (in review) for our object-

based image analysis.  Through several iterative classification trials, scale, shape, and compactness 

parameters were determined that best represented land cover classes (Table 1) for each treatment.  

Because there is no single parameter that is appropriate for classifying all features simultaneously 

(Frohn & Chaudhary, 2008), we took the approach of using a smaller scale parameter to segment our 

objects that could then be merged into neighboring classified objects.  We found that with this 

technique, we could better optimize the segmentation of our land cover classes that are highly 

dependent on atmospheric conditions when imagery was acquired (Jensen, 2005).  We could also 

account for small spaces between plant canopies that may have been incorporated into surrounding 

objects if larger scale parameters had been used.  The designated features and thresholds developed 
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using the training subplots were then tested on the remaining subplots for each treatment (validation 

subplots).   

 

2.5. Statistical Analysis 

We used a paired t-test to determine whether the mean value responses were different between OBIA 

and ground-measured data for each treatment plot and land cover class.  Additional paired t-tests were 

used to determine whether the mean value responses for individual sites were different between OBIA 

and ground-measurements for each land cover class.  All paired t-tests were evaluated for significance 

differences using the Bonferroni correction (p < 0.05/5).  Statistical assumptions for normality and 

variance were assessed. Mean difference values for each land cover class by site and treatment were 

compared using one-way ANOVA and the Tukey-Kramer honestly significant difference multiple 

comparison method with a significance level of p < 0.05.  To determine if OBIA consistently 

overestimated or underestimated land cover classes, ground measurements (considered to be correct) 

were always subtracted from OBIA data.  A simple linear regression model was used to assess the 

relationship between ground-measured data and OBIA data.  These regression models only apply within 

the context of the data set from which they are derived.   

 

2.6. Accuracy Assessments 

Accuracy assessments were conducted on classified thematic maps for each treatment to determine the 

statistical reliability of classified data using ERDAS Imagine 11.0 software (ERDAS Inc., Atlanta, GA).  For 

each cover type, we used a stratified random approach to generate 35 points per cover class 

(Congalton, 2001) for the 5-6 cover classes found in each of the treatment plots.  This was repeated for 

three subplots per site per treatment totaling 36 subplots evaluated (prescribed burn = 15 subplots; 
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mechanical cut and fell = 15 subplots; mastication = 6 subplots; Table 6).  An error matrix was then 

populated by summing the totals from all treatments, followed by the calculation of producer’s accuracy 

(omission error), user’s accuracy (commission error), overall accuracy, conditional Khat coefficient of 

agreement, and Khat coefficient of agreement (Jensen, 2005). 

   

3. Results and Discussion 

3.1. Prescribed fire 

Land cover classes found within the prescribed fire treatments (Fig. 1 A & B) did not differ significantly 

between the OBIA and ground-measurement methods (Table 2A).  However, when individual sites were 

analyzed, live trees land cover classes did differ between the two methods (Table 3).  OBIA estimates 

were on average 4% more than ground measurements for live tree cover of western juniper (Juniperus 

occidentalis) plots, and on average 1% less than ground measurement for live tree cover of Utah juniper 

(Juniperus osteosperma) plots.  Live trees were most often misclassified as perennial herbaceous 

vegetation (Table 6) with most misclassified objects located around the perimeter of tree canopies.  

Tree canopy edges are difficult to correctly classify due to reduced foliage and increased reflectance of 

light off understory vegetation or bare ground through the canopy edge (Hulet et al., in review).   

 

Burned tree land cover classes varied across sites depending on the intensity of the prescribed burn.  For 

subplots with higher intensity burns (higher severity), more tree biomass was consumed leaving less 

material to be classified.  In areas with a less intense fire, where needles and branches were not 

completely consumed, objects had more prominent spectral differences from other land cover classes 

and could be more easily classified.  Few shrubs survived the prescribed fire treatment (15 total 
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subplots); where shrubs survived, OBIA cover estimates were within ± 5% of the ground-measured 

estimate (Table 3). 

 

 Prescribed fire generally consumes above-ground plant canopies and allows aerial photography to 

capture perennial herbaceous vegetation recovery, annual vegetation invasion, and bare ground 

connectivity.  Cover estimates from OBIA and ground measurements were highly correlated (perennial 

herbaceous vegetation r = 0.90; litter r = 0.92; and bare ground r = 0.91; Fig. 2).  OBIA cover estimates 

for these classes were within ±5 % of ground measurements (Table 3).  Conditional Khat values for these 

classes was lower than tree and shrub (Table 6) however, they still indicate a strong agreement between 

the OBIA classification and ground-reference data.  For both perennial herbaceous vegetation and litter 

land cover classes, user’s accuracy was slightly higher than producer’s accuracy resulting in those land 

cover classes being underestimated across the subplot.   

 

3.2. Mechanical cut and fell 

Within the mechanical cut and fell treatment (Fig. 1 C & D), cover of cut trees and litter differed 

significantly between OBIA and ground-measured methods (Table 2B).  Compared to ground 

measurements, cut tree land cover classes were typically underestimated by OBIA (2%) whereas litter 

was overestimated by OBIA (3%).   As with the prescribed burn plots, differences occasionally occurred 

between the two estimation methods within and among sites for certain land cover classes (Table 4).  At 

Devine Ridge, OBIA estimates of cut tree cover were on average 5.7% less than ground cover 

measurements.  With the exception of Stansbury, OBIA estimates of cut tree cover were generally lower 

then ground measurements (Table 4).  To reduce the heterogeneity found within objects, we used the 

median filtered RGB imagery and a hue transformation parameter for the classification.  This minimized 

object variation within the cut tree canopy but also compromised other land cover classes (i.e. litter) 
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found within the canopy of the cut tree as reflected in the error matrix (Table 6B).  Although the 

conditional Khat coefficient of agreement is 0.89 for cover of cut trees, the producer’s and user’s error 

are dissimilar suggesting that errors of omission were higher than commission error resulting in the 

underestimation of cut trees proportionally to the remaining land cover classes.    

 

OBIA litter cover estimates were significantly different from ground-measurements at Blue Mountain, 

Marking Corral, and Onaqui (Table 4).  At all sites, OBIA litter cover estimate were approximately 3% 

greater than ground measurements which is likely due to the filtering techniques mentioned above.  

Spectrally, needles retained on cut tree branches were very similar to litter.  In addition to spectral 

parameters, multiple textural parameters were explored to better classify or distinguish the two land 

cover classes from one another.  We found that our multiresolution segmentation parameters were too 

fine to capture any textural differences between the two classes.  However, it may be possible to mask 

out cut trees and improve the classification of litter cover by utilizing eCognition’s ability to perform 

multiple segmentation processes on a single image (Laliberte, et al. 2007a).     

 

The best correlation between image and ground cover values for mechanical cut and fell treatments was 

for cover of bare ground (r = 0.96) while perennial herbaceous vegetation had the lowest correlation (r = 

0.84) (Fig. 3). The overall accuracy for the mechanical cut and fell treatment was 82% with a kappa 

statistic of 0.77 (Table 6B). With the exception of cut tree cover, our OBIA cover estimates are within 

reasonable error for many land management decisions (average mean difference range <±10% of 

ground measured cover).  
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3.3. Mastication 

 Cover did not differ between OBIA and ground-measurement methods across the masticated subplots 

(Table 2C; Fig. 1 E & F).  Although there was no significant difference between measurement methods, 

correlation of cover estimates for masticated debris was lower than the other land cover classes (r = 

0.73, Fig. 5).  The lower correlation for this variable may have resulted from capturing images 2-3 years 

post treatment.  Although masticated debris was still present on treatment plots, debris was scattered 

away from the initial pile, presumably due to wind and precipitation.  As masticated debris was 

dispersed throughout the plots, ground-measurement methods could still account for individual debris 

material.  However, our pixel resolution was inadequate to capture individual pieces of smaller clumps 

of masticated debris which were most often misclassified as bare ground (Table 6C).   

 

Cover values for land cover classes were only significantly different between methods at the Onaqui site 

where OBIA shrub cover was 2% lower than ground measured shrub cover (Table 5). The averaged mean 

difference across all land cover classes in the masticated treatment plots between the two methods 

were ±3% (Table 5). For the mastication treatment plots, the overall accuracy was 84% with a kappa 

statistic of 0.80 (Table 6C). Perennial herbaceous vegetation was most often misclassified according to 

our error matrix, however there was still a strong correlation between the two measurement methods (r 

= 0.89; Fig. 4).  Additionally, correlations between the two methods for cover of shrubs, litter, and bare 

ground were relative high (Fig. 4) providing evidence that these methods could be used to assess 

treatment plots across a landscape.   

 

4. Conclusions 

This study demonstrates that high-resolution imagery and object-based image analysis techniques that 

estimate cover described by Hulet et al. (in review), have the potential to assess the spatial distribution 
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and cover of vegetation, bare ground, litter and down woody debris resulting from treatments.   

Differences between mean estimates using OBIA and ground-measurements were not consistently 

higher or lower for any of our land cover classes (Table 2) and when evaluated for individual sites, are 

within ± 5% of each other.   

 

Although OBIA cover estimates were strongly correlated with ground measurements, they were least 

similar for the mechanical cut and fell treatment and more similar for the prescribed burn and 

mastication treatments.  Aerial photography is limited to the horizontal land cover class distribution that 

omits important understory characteristics and height estimates that play a critical role in fire behavior 

(Arroyo et al., 2008) and in determining ecological resiliency.  For example, our imagery and techniques 

do not account for understory vegetation cover of shrubs, perennial grasses, and invasive grasses found 

under cut trees that likely influences ecological processes and function.  As needles fall off of cut trees 

over subsequent years, there may be more potential for remotely-sensing these land cover classes.  

Prescribed fire and mastication remove overstory vegetation (i.e. juniper trees) allowing for the 

detection of smaller shifts within a plant community and bare ground that would impact treatment 

maintenance as well as rangeland conditions (Pyke et al., 2002). 

 

Remote sensing does have limitations, however, correctly classifying land cover classes is a step to 

better modeling and understanding fire behavior (Andrews, et al., 2008; Finney, 2004; Scott & Burgan, 

2005), planning future fuel-reduction treatments (Ager et al., 2010; Finney, 2001), making strategic 

decisions about fire suppression (Rollins, et al., 2004), quickly gauging the success of treatments, and 

prioritizing maintenance treatments.  Future research should explore how cover estimates from OBIA of 

fuels can be integrated with field sampled physical characteristics such as loading, size, and bulk density 

for PJ woodlands to quantify fuel loads following treatments.  Both an accurate knowledge of the spatial 
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distribution and quantity of fuel loads is critical when analyzing, modeling, and predicting fire behavior 

(Andrews et al., 2008; Arroyo et al., 2008; Finney, 1999; Hall & Burke, 2006).  Additionally, further 

research should be conducted that links ground measurements and OBIA measurements across multiple 

spatial scales (Herrick et al., 2006; Laliberte et al., 2007b) and remote sensing platforms (Gibbes et al., 

2010) that could potentially provide land managers with a rapid assessment of rangeland conditions and 

trends. 
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Tables 

 

Table 1.  Land cover class descriptions that were used in the study.    

Land cover 
class Description             

Live Trees Live tree cover found on prescribed burn subplots.  

Burned Trees Burned tree cover found on prescribed burn subplots, includes burned needles retained on 
tree branches. 

Cut Trees Cut tree cover found on the mechanical cut and fell treatment subplots, includes needles 
retained on tree branches. 

Masticated 
Debris 

Masticated debris cover found in masticated (Bullhog®) subplots for Utah sites only (ON and 
ST).  Masticated debris includes pieces of wood or bark on the ground that are obvious results 
of the treatment.  

Shrubs Dominant shrub cover includes sagebrush (all sites), antelope bitterbrush (BM, DR, and ST), 
and dead shrubs.  Yellow rabbitbrush (Chrysothamnus viscidiflorus) and other small non-
dominant shrubs could not confidently be distinguished from bunchgrasses and forbs so were 
included as part of the perennial herbaceous cover class. 

Perennial 
Herbaceous 
(Per Herb) 

Native perennial herbaceous vegetation cover includes the following dominant species: Idaho 
fescue (BM and DR), Sandburg's bluegrass (all sites), bluebunch wheatgrass (MC, ON, and ST), 
Thurber's needlegrass (DR and MC), and needle and thread grass (MC). 

Litter Litter cover consists of non-living plant or animal material that rests on top of the soil surface 
including detached woody material.  Also includes annual species, particular cheatgrass which 
typically comprises <10% of the total litter composition with the exception of Stansbury where 
cheatgrass comprises > 20% of the litter cover class. 

Bare Ground Bare ground cover is primarily composed of mineral soil (>90 %) and rock with <3% lichen or 
moss.   

Site codes: Blue Mountain (BM), Devine Ridge (DR), Marking Corral (MC), Onaqui (ON), Stansbury (ST).   
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Table 2.  Comparison of land cover class mean percent cover estimates from object-based image analysis (OBIA) and ground-
measured data using a paired t-test for (A) prescribed burn, (B) cut and fell, and (C ) mastication fuel-reduction treatments.  Live 
trees, burned trees, cut trees and masticated debris are results of specific treatments.  Differences were calculated by subtracting 
ground measurements from OBIA data.   

(A) (B) (C) 

Land cover class p-value 

Mean 
Difference   
(% cover) 

95% CI        
(% cover) p-value 

Mean 
Difference   
(% cover) 

95% CI        
(% cover)   p-value 

Mean 
Difference   
(% cover) 

95% CI         
(% cover) 

Live Trees 0.9773 -0.02  -1.02-0.99  -  -  -  -  -  - 
Burned Trees 0.8062 -0.12  -1.10-0.86  -  -  -  -  -  - 
Cut Trees  -   -  - 0.0006* -2.00  -3.11--0.90  -  -  - 
Masticated Debris  -   -  -  -  -  - 0.4568 -0.59  -2.23-1.03 

Shrubs 0.5255 -0.34  -2.39-1.28 0.1453 0.78  -0.28-1.84 0.5751 -0.35  -1.61-0.92 

Per Herb 0.7826 -0.17  -1.38-1.04 0.8538 0.11  -1.03-1.24 0.0580 1.80  -0.07-3.65 

Litter 0.1698 1.17  -0.51-2.85 < 0.0001* 3.00 1.95-4.05 0.1727 1.24  -0.58-3.06 
Bare Ground 0.2918 -0.77  -2.25-0.68 0.3804 -0.46  -1.52-0.59   0.3844 0.96  -1.28-3.19 
Per Herb = Perennial herbaceous vegetation; CI = Confidence interval 
* indicates significant differences (Bonferroni correction p < 0.01) between OBIA and ground measured mean values. 
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Table 3.  (A) Summary statistics for land cover classes in prescribed burn treatment subplots by site for object-based image analysis 
(OBIA) and ground-measured sampling (Gnd) methods.  (B) Comparison statistics between site average mean differences for each 
land cover class.  Differences were calculated by subtracting ground measurements from OBIA data.   

  (A)           (B)         

Land Cover 
Class Sitet Method 

Mean       
(% Cover) SE 

Range       
(% Cover)   Sitet 

Average Mean 
Difference         
(% Cover) SE 

Average Mean 
Difference Range     

(% Cover) N 

Live Trees BM OBIA 10.70 2.57 7.5-16.0 BM           3.81a                    0.98             1.8-7.0 3 
Gnd 7.13 0.98 5.7-9.0 DR     4.11a 0.85             3.1-5.8 4 

 DR* OBIA 5.53 0.76 4.0-7.5 MC          -1.02b 0.42           -4.1-3.6 16 
 Gnd 1.43 0.38 0.3-2.0 ON          -1.95b 0.76          -4.5--1.0 5 
 MC OBIA 2.02 0.65 0.0-7.6 ST          -0.77b 0.98          -1.7--0.3 3 
 Gnd 3.04 0.56 0.3-7.7 
 ON OBIA 0.65 0.40 0.0-1.8 
 Gnd 2.60 0.99 1.0-6.3 
 ST OBIA 0.00 0.00 0.0-0.0 
 Gnd 0.77 0.47 0.3-1.7 

Burned 
Trees 

BM OBIA 7.64 4.89 1.1-18..2 BM          -2.88b 1.13         -19.2-5.4 13 
Gnd 10.52 9.44 0.3-31.3 DR         -0.98ab 1.13           -5.7-3.8 13 

 DR OBIA 6.30 5.79 0.9-17.1 MC           1.94a 0.87           -4.5-8.1 22 
 Gnd 7.28 5.41 0.3-19.3 ON         -0.48ab 0.99           -6.7-5.6 17 
 MC OBIA 4.86 2.67 0.5-9.7 ST          0.54ab 1.18           -3.5-8.9 12 
 Gnd 2.93 1.95 0.3-8.0 
 ON OBIA 12.11 5.94 3.1-21.3 
 Gnd 12.59 5.30 3.9-22.8 
 ST OBIA 4.76 6.34 0.2-22.8 
 Gnd 4.23 6.34 0.0-23.0 

Shrubs BM OBIA 5.04 0.89 3.0-7.7 BM           -1.62a 1.23          -2.7--0.3 5 
 Gnd 6.67 1.00 4.9-10.4 DR            1.86a 1.13           -3.4-4.9 6 
 DR OBIA 4.13 0.96 0.8-6.9 MC           -2.85a 1.38           -5.2-0.7 4 

 Gnd 2.27 0.72 0.0-5.3 
 MC OBIA 7.40 1.43 4.5-10.1 
 Gnd 10.25 1.30 7.7-13.7 

Perennial 
Herbaceous 
Vegetation 

BM OBIA 33.02 3.70 10.2-60.7 BM           -2.78a 1.45         -10.5-3.2 13 
Gnd 35.80 4.24 8.6-52.0 DR            2.01a 1.45         -8.3-12.4 13 

DR OBIA 18.48 2.47 5.7-33.1 MC            0.27a 1.11           -9.4-9.5 22 
 Gnd 16.47 2.40 3.9-31.9 ON            0.61a 1.27           -8.1-9.0 17 
 MC OBIA 25.10 1.75 9.5-41.4 ST           -1.60a 1.51           -9.0-7.9 12 
 Gnd 24.83 1.43 10.9-35.9 
 ON OBIA 20.22 1.73 11.5-35.5 
 Gnd 19.62 1.10 12.2-30.3 
 ST OBIA 20.90 5.49 2.9-50.5 
 Gnd 22.50 4.78 1.4-48.3 

Litter BM OBIA 31.38 1.82 14.8-40.6 BM            2.93a 2.01       -12.4-10.7 13 
 Gnd 28.45 2.40 14.6-43.7 DR            2.85a 2.01       -14.4-16.6 13 
 DR OBIA 40.52 2.92 23.6-57.9 MC            2.02a 1.55       -14.2-18.7 22 

 Gnd 37.67 2.33 21.6-53.0 ON           -2.86a 1.76       -13.9-11.4 17 
 MC OBIA 20.89 1.46 6.4-34.8 ST            1.57a 2.09           -7.5-9.9 12 
 Gnd 18.86 1.37 5.0-34.0 
 ON OBIA 40.82 2.15 21.4-53.7 
 Gnd 43.68 1.66 34.9-56.3 
 ST OBIA 67.14 5.58 35.2-88.9 
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 Gnd 65.57 6.03 25.3-92.4 
Bare   

Ground 
BM OBIA 21.21 2.68 11.1-42.7 BM            2.36a 1.74         -9.4-14.0 13 

Gnd 18.85 2.24 5.0-31.3 DR           -4.39a 1.74         -16.0-2.4 13 
 DR OBIA 29.57 3.23 9.0-54.9 MC           -1.39a 1.34       -12.7-10.8 22 
 Gnd 33.95 2.44 22.0-53.0 ON           -0.77a 1.52       -15.8-14.6 17 
 MC OBIA 45.71 2.02 28.0-64.1 ST            0.82a 1.81           -2.5-7.0 12 
 Gnd 47.10 1.59 35.7-65.0 
 ON OBIA 25.65 1.64 13.7-36.6 
 Gnd 26.42 1.52 10.7-36.3 
 ST OBIA 8.16 0.86 4.5-13.9 
    Gnd 7.34 0.92 2.0-13.0             
SE = standard error; N = subplots sampled 
t Blue Mountain (BM), Devine Ridge (DR), Marking Corral (MC), Onaqui (ON), Stansbury (ST).   

Average mean differences with different letters within land cover class are significantly different (p < 0.05) from other sites in that land cover class 
using Tukey-Kramer honestly significant difference multiple comparison procedure.  

* Indicates a significant difference (Bonferroni correction p < 0.01) between the two methods for that site using the paired t-test. 
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Table 4.  (A) Summary statistics for land cover classes in cut and fell treatment subplots by site for object-based image analysis 
(OBIA) and ground-measured sampling (Gnd) methods.  (B) Comparison statistics between site average mean differences for each 
land cover class.  Differences were calculated by subtracting ground measurements from OBIA data.   

  (A)           (B)         

Land Cover 
Class Sitet Method 

Mean       
(% Cover) SE 

Range       
(% Cover)   Sitet 

Average Mean 
Difference         
(% Cover) SE 

Average Mean 
Difference Range     

(% Cover) N 

Cut Trees BM OBIA 26.69 3.38 9.6-52.7 BM         -1.75ab 1.11           -7.2-6.5 14 
Gnd 28.44 2.76 12.3-48.9 DR         -5.79b 1.25         -12.2-1.2 11 

 DR* OBIA 18.39 2.44 6.8-34.5 MC         -0.21a 1.04           -5.3-5.8 16 
 Gnd 24.17 3.03 5.6-46.3 ON         -3.16ab 1.11         -10.6-2.3 14 
 MC OBIA 13.17 1.50 2.7-23.3 ST          0.12a 1.20           -6.5-6.4 12 
 Gnd 13.38 1.56 0.6-23.3 
 ON OBIA 12.11 1.46 4.1-22.0 
 Gnd 15.27 1.56 3.6-25.4 
 ST OBIA 28.46 2.33 18.8-43.1 
 Gnd 28.34 1.45 21.9-36.7 

Shrubs BM OBIA 17.03 2.50 5.9-34.7 BM           -0.25a 1.13           -8.4-6.3 14 
Gnd 17.29 2.40 3.3-30.3 DR            2.34a 1.28         -5.7-12.9 11 

 DR OBIA 13.59 2.49 0.9-25.6 MC           -0.90a 1.06           -6.3-3.0 16 
 Gnd 11.25 2.59 0.0-23.4 ON            2.40a 1.13           -7.5-9.5 14 
 MC OBIA 15.26 1.93 1.6-30.1 ST            0.91a 1.23           -5.1-6.0 12 
 Gnd 16.16 1.64 3.0-28.0 
 ON OBIA 11.64 2.18 1.4-26.9 
 Gnd 9.24 2.55 1.0-28.3 
 ST OBIA 8.91 1.64 1.9-17.8 
 Gnd 8.01 1.26 2.0-15.7 

Perennial 
Herbaceous 
Vegetation 

BM OBIA 21.32 2.11 10.6-33.4 BM            0.29a 1.22           -4.9-8.2 14 
Gnd 21.03 1.72 11.3-31.7 DR           -0.90a 1.37           -9.5-8.2 11 

DR OBIA 18.37 2.02 8.2-32.3 MC            2.47a 1.14           -4.9-8.6 16 
 Gnd 19.27 2.12 10.7-33.1 ON           -1.21a 1.22           -8.2-7.0 14 
 MC OBIA 22.30 0.92 16.5-30.2 ST           -0.81a 1.31           -9.1-6.5 12 
 Gnd 19.84 1.45 7.9-29.3 
 ON OBIA 24.70 1.83 11.6-34.5 
 Gnd 25.91 1.55 14.3-34.6 
 ST OBIA 32.71 2.47 19.7-47.2 
 Gnd 33.52 2.37 21.6-46.2 

Litter BM* OBIA 20.26 1.48 12.0-29.9 BM            3.65a 1.17           -2.0-9.9 14 
 Gnd 16.61 1.24 10.7-28.6 DR            1.72a 1.32           -6.6-8.6 11 
 DR OBIA 23.73 1.90 10.7-32.9 MC            3.00a 1.10           -1.2-7.6 16 

 Gnd 22.01 1.74 11.9-31.4 ON            3.33a 1.17           -3.2-9.0 14 
 MC* OBIA 7.09 1.97 0.7-14.1 ST            3.05a 1.27           -7.0-9.7 12 
 Gnd 4.09 0.82 0.7-15.1 
 ON* OBIA 23.22 1.09 16.1-30.1 
 Gnd 19.89 1.27 11.6-30.7 
 ST OBIA 27.20 1.20 17.1-33.2 
 Gnd 24.16 1.76 16.0-34.4 

Bare   
Ground 

BM OBIA 14.56 1.52 4.3-23.5 BM            0.51a 1.17           -7.3-9.5 14 
Gnd 14.05 0.98 6.3-19.7 DR            0.11a 1.32           -7.7-6.7 11 

 DR OBIA 14.96 1.65 5.4-24.2 MC           -1.74a 1.09           -7.7-4.0 16 
 Gnd 14.86 1.50 3.4-21.3 ON           -0.09a 1.17           -6.8-8.9 14 
 MC OBIA 41.80 1.46 28.7-50.7 ST           -0.87a 1.26           -8.2-1.8 12 
 Gnd 43.54 1.16 33.7-49.0 
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 ON OBIA 29.07 2.41 11.3-39.4 
 Gnd 29.16 2.07 12.3-40.0 
 ST OBIA 4.43 0.48 1.9-6.7 
    Gnd 5.30 0.93 1.3-13.6             
SE = standard error; N = subplots sampled 
t Blue Mountain (BM), Devine Ridge (DR), Marking Corral (MC), Onaqui (ON), Stansbury (ST).   

Average mean differences with different letters within land cover class are significantly different (p < 0.05) between sites in that land cover class 
using Tukey-Kramer honestly significant difference multiple comparison procedure.  

* Indicates a significant difference (Bonferroni correction p < 0.01) between the two methods for that site using the paired t-test. 
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Table 5.  (A) Summary statistics for land cover classes in masticated treatment subplots by site for object-based image analysis 
(OBIA) and ground-measured sampling (Gnd) methods.  (B) Comparison statistics between site average mean differences for each 
land cover class.  Differences were calculated by subtracting ground measurements from OBIA data.   

  (A)           (B)         

Land Cover 
Class Sitet Method 

Mean       
(% Cover) SE 

Range       
(% Cover)   Sitet 

Average Mean 
Difference         
(% Cover) SE 

Average Mean 
Difference Range     

(% Cover) N 

Masticated 
Debris 

ON OBIA 14.00 1.36 9.1-22.7 ON            0.21a 1.21           -5.9-7.3 13 
Gnd 13.79 1.66 5.7-27.7 ST          -1.47a 0.99           -6.8-4.8 12 

 ST OBIA 9.10 1.15 3.4-15.8 
 Gnd 10.57 1.43 3.3-21.3 

Shrubs ON* OBIA 4.21 0.64 0.6-9.5 ON           -1.85a 0.51           -4.8-1.1 13 
Gnd 6.05 0.96 0.3-12.9 ST            1.28a 0.97           -4.1-7.2 12 

 ST OBIA 9.72 2.10 0.5-22.7 
 Gnd 8.44 2.04 1.7-21.3 

Perennial 
Herbaceous 
Vegetation 

ON OBIA 24.19 1.80 15.8-39.3 ON            2.30a 1.20           -3.9-9.9 13 
Gnd 26.49 1.87 11.9-40.2 ST            1.24a 1.37         -2.7-11.9 12 

ST OBIA 38.51 2.16 26.9-51.1 
 Gnd 39.75 1.99 28.0-51.9 

Litter ON OBIA 21.41 1.68 14.3-38.2 ON            0.86a 1.57         -8.6-12.1 13 
 Gnd 20.55 1.76 12.4-35.2 ST            1.65a 0.77           -2.4-6.0 12 
 ST OBIA 37.13 2.85 22.9-56.2 

 Gnd 35.48 2.27 25.3-52.3 
Bare   

Ground 
ON OBIA 36.25 1.75 26.3-45.5 ON            1.24a 1.47         -9.4-12.1 13 

Gnd 35.01 1.74 25.0-44.7 ST            0.65a 1.68         -8.5-12.3 12 
 ST OBIA 7.44 1.17 3.4-16.6 
    Gnd 6.78 0.93 2.0-12.7             
SE = standard error; N = subplots sampled 
t Blue Mountain (BM), Devine Ridge (DR), Marking Corral (MC), Onaqui (ON), Stansbury (ST).   

Average mean differences with different letters within land cover class are significantly different (p < 0.05) from other sites within that land cover 
class using Tukey-Kramer honestly significant difference multiple comparison procedure.  

* Indicates a significant difference (Bonferroni correction p < 0.01) between the two methods for that site using the paired t-test. 
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Table 6.  Error matrix comparing classification accuracy for land cover class across 
all sites for prescribed burn (A), cut and fell (B), and mastication (C) treatments. 

(A)                                   
Prescribed burn 

Live 
Trees 

Burned 
Trees Shrubs 

Per 
Herb Litter 

Bare 
Ground 

Live Trees 185 2 6 4 3 1 

Burned Trees 2 536 12 28 20 

Shrubs 2 103 13 3 1 

Per Herb 8 15 590 49 9 

Litter 3 17 5 65 597 42 

Bare Ground 2 26 1 29 91 520 

Producer's accuracy 93% 90% 90% 83% 77% 88% 

User's accuracy 92% 90% 84% 88% 82% 78% 

Conditional Khat 0.91 0.87 0.84 0.76 0.72 0.84 

Overall accuracy = 85%     Khat = 0.81     N = 2,990 

(B)                                      
Cut and fell   Cut Trees Shrubs 

Per 
Herb Litter 

Bare 
Ground 

Cut Trees 586 4 13 16 25 

Shrubs 25 893 55 34 9 

Per Herb 47 27 527 42 17 

Litter 62 8 64 483 35 

Bare Ground 59 14 42 74 498 

Producer's accuracy 75% 94% 75% 74% 85% 

User's accuracy 91% 88% 80% 74% 73% 

Conditional Khat 0.89 0.84 0.75 0.68 0.67 

Overall accuracy = 82%     Khat = 0.77     N = 3,659 
(C )                                
Mastication (Utah 
only)   

Masticated 
Debris Shrubs 

Per 
Herb Litter 

Bare 
Ground 

Masticated Debris 218 1 14 9 6 

Shrubs 7 211 13 7 6 

Per Herb 7 4 253 14 6 

Litter 8 31 219 18 

Bare Ground 11 3 18 26 210 

Producer's accuracy 87% 96% 77% 80% 85% 

User's accuracy 88% 87% 89% 79% 78% 

Conditional Khat 0.85 0.84 0.85 0.74 0.73 

Overall accuracy = 84%     Khat = 0.80     N = 1,320       
Per Herb = Perennial herbaceous vegetation 

Khat = Coefficient of Agreement (Kappa statistic); N = number of point evaluated 
Bold values indicate correct number of points classified within a land cover class by fuel 
reduction treatment. 
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Figures 

  

Fig. 1.  Example of juniper subplot RGB imagery and classification results using object-based 
image analysis for a prescribed burn at Stansbury (A, B), cut and drop at Blue Mountain (C, 
D), and mastication at Onaqui (E, F).  Individual land cover classification colors represent 
burned trees (B, green), cut and felled trees (D, aqua), masticated debris (F, aqua), shrubs 
(blue), perennial herbaceous vegetation ( orange), litter (pink), bare ground (yellow), and 
shadows (gray). 
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Fig. 2. Regressions of percent cover estimates from an object-based image analysis (y-axis) on 
ground-reference cover (x-axis) using subplots for all prescribed burn treatment plots across all 
study sites.  Cover classes include (A) burned trees, (B) shrubs, (C) perennial herbaceous 
vegetation, (D) litter, and (E) bare ground.   
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Fig. 3. Regressions of percent cover estimates from an object-based image analysis (y-axis) on 
ground-reference cover (x-axis) using subplots for cut and fell treatment plots across all study 
sites.  Cover classes include (A) cut trees, (B) shrubs, (C) perennial herbaceous vegetation, (D) 
litter, and (E) bare ground.   

O
bj

ec
t-

Ba
se

d 
Im

ag
e 

A
na

ly
si

s 
(%

 C
ov

er
)

Ground-Reference (% Cover)

y = 0.8196x + 4.3812
r = 0.8387

0

10

20

30

40

50

0 10 20 30 40 50

C

y = 0.8377x + 2.8386
r = 0.8661

0

5

10

15

20

25

30

35

40

0 10 20 30 40

B

y = 0.8687x + 5.1743
r = 0.8801

0

5

10

15

20

25

30

35

40

0 10 20 30 40

D

y = 0.9499x + 0.6758
r = 0.9572

0

10

20

30

40

50

60

0 20 40 60

E

y = 0.9633x - 1.223
r = 0.9058

0

10

20

30

40

50

60

0 20 40 60

A



www.manaraa.com

61 
 

 

Fig. 4. Regressions of percent cover estimates from an object-based image analysis (y-axis) on 
ground-reference cover (x-axis) using subplots for masticated treatment plots across all Utah 
study sites.  Cover classes include (A) masticated debris, (B) shrubs, (C) perennial herbaceous 
vegetation, (D) litter, and (E) bare ground.   

O
bj

ec
t-

Ba
se

d 
Im

ag
e 

A
na

ly
si

s 
(%

 C
ov

er
)

Ground-Reference (% Cover)

y = 0.8678x + 5.8985
r = 0.8939

0

10

20

30

40

50

60

0 20 40 60

C

y = 0.9194x + 0.2318
r = 0.8576

0

5

10

15

20

25

0 5 10 15 20 25

B

y = 1.0059x + 1.079
r = 0.9202

0

10

20

30

40

50

60

0 20 40 60

D

y = 0.9623x + 1.7686
r = 0.9386

0

10

20

30

40

50

0 10 20 30 40 50

E

y = 0.6569x + 3.6016
r = 0.7311

0

5

10

15

20

25

0 10 20 30

A



www.manaraa.com

62 
 

Chapter 3: Cover Estimations using Object-Based Image Analysis Techniques across Multiple 
Scales in Pinyon and Juniper Woodlands 
 

April Hulet1, Bruce A. Roundy2, Steven L. Petersen3, Ryan R. Jensen4 and Stephen C. Bunting5 

 

Authors are 1Graduate Student, 2Professor, 3Assistant Professor, Plant and Wildlife Sciences Department, 
Brigham Young University, Provo, UT 84602 USA; 4Associate Professor, Geography Department, Brigham 
Young University, Provo, UT 84602 USA; and 5Professor, Department of Rangeland Ecology and 
Management, University of Idaho, Moscow, ID 83844-1135 USA.  
 
 
Research was funded in part by the Joint Fire Sciences Sagebrush Steppe Treatment Evaluation Project, 
the Bureau of Land Management, and Brigham Young University. 
 
Correspondence:  April Hulet, Email: april.hulet@gmail.com 
 
 
Manuscript prepared for submission to Rangeland Ecology and Management 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

63 
 

ABSTRACT 

 

Numerous studies have been conducted that evaluate the utility of remote sensing for monitoring and 

assessing vegetation and ground cover to support land management decisions and complement ground-

measurements.  However, few land cover comparisons have been made using high-resolution imagery 

and object-based image analysis (OBIA) to evaluate rule-sets across multiple spatial scales.  In this study, 

we investigate the accuracy of OBIA rule-sets (models) developed using eCognition Developer that 

estimate cover measurements from high-spatial resolution imagery (0.06-m pixel), relative to ground 

based measurements on Pinus L. (pinyon) and Juniperus L. (juniper) woodlands.  Rule-sets evaluated 

include four spatial scales: 1) individual 30 X 33-m subplots, 2) individual sites (5-20 hectares), 3) regions 

(western juniper vs. Utah juniper), and 4) P-J woodlands across the Great Basin.  Color-infrared imagery 

was acquired over five sites in Oregon, California, Nevada, and Utah with a Vexcel UltraCamX digital 

camera in June/July 2009 as part of the Sagebrush Steppe Treatment Evaluation Project (SageSTEP).  

Ground cover measurements were also collected at study sites in 2009 on 80, 0.1-hectare subplots.  

Correlations between OBIA and ground measurements were relatively high for individual subplots and 

site spatial scales (ranging from r = 0.52 to r = 0.98).  Correlations for regional and network spatial scales 

were lower (ranging from r = 0.24 to r = 0.63) which was expected due to reflectance differences within 

the imagery as well as vegetation differences found at each site.  All site and subplot OBIA average cover 

estimates were within 5% of the ground measurements, and all region and network OBIA average cover 

estimates were within 10%.  The trade-off for decreased precision over a larger area (region and 

network scale) may be useful to prioritize fuel-management strategies but will unlikely capture subtle 

shifts in understory plant communities that site and subplot spatial scales often capture.   

 

 



www.manaraa.com

64 
 

Keywords: 

eCognition Developer, Object-Based Image Analysis, Pinyon and Juniper Woodlands, SageSTEP, Scale  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

65 
 

INTRODUCTION 

 

Monitoring to assess vegetation and ground cover to detect shifts in plant community diversity, 

structure, and function is the basis for planning local and regional vegetation management actions.  In 

order to effectively and efficiently monitor and assess ecosystems, one must first identify which 

vegetation characteristics and attributes should be measured to meet management objectives (Pellant 

et al. 2005); and secondly, address what data collection methods will be economically feasible, as well as 

accurate and precise enough to meet management objectives (Coulloudon et al. 1999; MacKinnon et al. 

2011).     

 

Remote-sensing technologies and platforms are continually being developed and evaluated to improve 

our ability to monitor, inventory, and assess large and diverse landscapes (Booth and Tueller 2003; Hunt 

et al. 2003; Toevs et al. 2011), and to reduce or complement costly field data (Laliberte et al. 2007a; 

Booth et al. 2008).  These studies are utilizing multiple remote sensing platforms such as satellite 

imagery (Ramsey et al. 2004; Bradley and Mustard 2005; Laliberte et al. 2007b; Bradley and Fleishman 

2008; Karl and Maurer 2010), high-spatial resolution imagery (Petersen and Stringham 2008; 

Greenwood and Weisberg 2009; Madsen et al. 2011; Hulet et al. in review b), and very large scale aerial 

imagery (Booth and Cox 2008; Laliberte and Rango 2009; Moffet 2009) across the Intermountain West.   

Ultimately, remote sensing should be assessed for its ability to provide land managers with tools and 

information at multiple spatial scales to select and timely implement management actions that benefit 

system resilience or restoration.   

 

Because management decisions are often made at both local and regional scales, remote sensing 

research is needed to evaluate the selection of the appropriate scale which often depends on the 
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objective of the investigations (Turner et al. 2001; Karl and Maurer 2010).  Processes and parameters 

important at one scale may not be as important or predictive at another scale (Turner 1989), and often 

the complexity of a particular ecological system depends on the objective of the investigation (Wu 1999).  

This research focuses on classifying Juniperus L. (juniper) and Pinus L. (pinyon) (P-J) woodlands across 

multiple spatial scales using object-based image analysis (OBIA) techniques to describe five land cover 

classes (live trees, shrubs, perennial herbaceous cover, litter, and bare ground).  As P-J woodlands 

expand and infill into shrub-steppe communities, understory plant species decrease (Miller et al. 2008), 

bare soil increases and becomes more interconnected (Pierson et al. 2010), and fire return intervals 

increase resulting in more stand-replacement fires (Miller and Tausch 2001).  By evaluating multiple 

spatial scales, land managers can better prioritize fuel-management strategies and restoration efforts to 

reduce catastrophic wildfire events and maintain desirable understory plant communities.    

 

Our primary objective is to test the accuracy of OBIA rule-sets (models) developed using eCognition 

Developer 8 (Trimble Germany GmbH, Munich, Germany) that estimate cover measurements from high-

spatial resolution imagery (0.06-m pixel), relative to ground based measurements on P-J expansion 

woodlands.   Rule-sets evaluated include four spatial scales: 1) individual 30 X 33-m subplots, 2) 

individual sites (5-20 hectares), 3) regions (western juniper vs. Utah juniper), and 4) P-J woodlands 

across the Great Basin.  We propose that cover estimates from high-spatial resolution imagery will fall 

within an acceptable error rate when compared to ground measurements using rule-sets that were 

developed for subplot and individual site scales.  For regional and Great Basin rule-sets, we expect that 

cover estimates from high-spatial resolution imagery will be less accurate than ground measurements 

for all land cover classes, but that estimates will be sufficiently accurate to support the management of 

sagebrush steppe ecosystems.  In order to further improve the application of remote-sensing technology, 

our secondary objective is to identify classification feature outputs from eCognition Developer that can 
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be used to distinguish land cover classes found in P-J woodlands across the Great Basin at the four 

spatial scales discussed above.    

 

METHODS 

 

Study Locations 

This study was conducted on five pinyon and/or juniper woodlands which are part of the Joint Fire 

Sciences Sagebrush Steppe Treatment Evaluation Project (SageSTEP).  Sites span the Great Basin and are 

found in Oregon (Devine Ridge), California (Blue Mountain), Nevada (Marking Corral), and Utah 

(Stansbury and Onaqui).  These sites provide a wide range of semi-arid sagebrush steppe communities 

that have been invaded by Juniperus occidentals Hook. (western juniper), Juniperus osteosperma (Torr.) 

Little (Utah juniper), and Pinus monophylla Torr. & Frém. (singeleaf pinyon).  Specific site characteristics 

have been described by McIver et al. (2010).   

 

Ground Measurements 

Ground data was collected by the SageSTEP team during the summer of 2009 on 80, 0.1-ha subplots (30 

by 33 m).  Cover measurements were collected within each subplot using the line-point intercept 

method (Canfield 1941) on five, 30-m transects that were placed systematically across the subplot 

(McIver et al. 2010).  First contact intercept data (top vegetation canopy or ground surface) was 

collected every 0.5-m totaling 300 points per subplot (5 transects X 60 points per transect) which 

represents the aerial view captured in the imagery.  Measurements from the line-point intercept 

method used in the data analysis included cover of shrubs, forbs, grasses, litter, standing and down 

woody debris, and ground surface (mineral soil, rock, lichen or moss) cover estimates.  Tree cover used 
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in the data analysis was measured using the crown-diameter method (Mueller-Dombois and Ellenberg 

1974).   

 

Land Cover Classes 

Cover classes used in this study consist of live trees, shrubs, perennial herbaceous vegetation, litter, and 

bare ground.  Cover classes are described below with associated sites (Devine Ridge, DR; Blue Mountain, 

BM; Marking Corral, MC; Stansbury, ST; Onaqui, ON) in parenthesis; if no sites are associated with the 

cover class it is found at all sites evaluated.  Live tree cover includes Utah juniper (ON, ST, MC), western 

juniper (BM, DR), and singleleaf pinyon (MC).  Dominant shrub cover includes Artemisia tridentata Nutt. 

ssp. wyomingensis Beetle & Young (Wyoming big sagebrush; ON, MC), Artemisia tridentata Nutt. ssp. 

vaseyana (Rydb.) Beetle (mountain big sagebrush; BM, DR, MC), and Purshia tridentata (Pursh) DC. 

(antelope bitterbrush; BM, DR, ST).  Chrysothamnus viscidiflorus (Hook.) Nutt. (yellow rabbitbrush) and 

other small non-dominant shrubs could not confidently be distinguished from bunchgrasses and forbs in 

the aerial imagery so were included as part of the perennial herbaceous cover class.  The perennial 

herbaceous vegetation cover also included the following dominant species:  Festuca idahoensis Elmer 

(Idaho fescue; BM and DR), Poa secunda J. Presl (Sandberg bluegrass), Pseudoroegneria spicata (Pursh) 

Á. Löve (bluebunch wheatgrass; MC, ON, and ST), Achnatherum thurberianum (Piper) Barkworth 

(Thurber’s needlegrass; DR and MC), and Hesperostipa comata (Trin. & Rupr.) Barkworth (needle and 

thread grass; MC).  Litter cover consists of non-living plant or animal material that rests on top of the soil 

surface including detached woody material.  Litter also includes annual species, particularly Bromus 

tectorum L. (cheatgrass) which typically comprised <10% of the total litter composition with the 

exception of Stansbury, where cheatgrass comprised approximately 20% of the total litter cover class.  

Bare ground cover is primarily composed of mineral soil and rock (>90%), with <3% lichen or moss.   
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Imagery Acquisition 

Color-infrared (red, green, blue, and infrared) imagery was acquired for all sites in late June to early July 

2009 with a Vexcel UltraCamX digital camera (Vexcel Imaging GmbH, Graz, Austria) on board a 

turbocharged Cessna 206 aircraft.  Imagery was processed to meet or exceed national map accuracy 

standards using software created by the Vexcel/Microsoft digital imaging partnership by Aero-graphics, 

Inc., Salt Lake City, Utah.   

 

Subplot Extraction 

Ground subplots were georeferenced on imagery using global positioning system (GPS) points collected 

with a GPSmap® 60CS unit in the center and at a designated corner of each of the 80, 0.1-ha subplots.   

Individual subplots were then drawn using ArcMap 10.0 (ESRI®AcrMapTM 1999-2010) and extracted from 

the landscape scene imagery so that measurements would be made on the same experimental unit for 

both OBIA and ground measured cover classes.  GPS accuracy allowed us to define remotely-sensed 

subplots to within 1-2 m of field subplots.   

 

Image Processing 

eCognition Developer 8 was used for our object-based image analysis (OBIA).  Rule sets, which are a 

sequence of processes that are executed in a defined order (Trimble 2011), were developed at four 

spatial scales:  1) individual 30x33 m subplots, 2) individual sites (Devine Ridge, Blue Mountain, Marking 

Corral, Stansbury, and Onaqui), 3) regions (western juniper vs. Utah juniper), and 4) all sites evaluated in 

this study across the SageSTEP network (which will be referred to as network from here on out).  Within 

rule sets, imagery was filtered to remove extraneous noise and detail, segmented to create meaningful 

objects of land cover classes, and classified using features and thresholds using techniques described by 
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Hulet et al. (in review a) (Table 1; Fig. 1).  By using rule sets, the user is able to examine what cover 

classes are least distinguishable from others and refine specific thresholds to better capture the 

variation of that class for a particular image or group of imagery.  

 

Experimental Design 

 Site scale 

Rule-sets for each site were first developed using an initial subset of the total subplots (training subplots, 

3 subplots per site) to determine features (spectral, spatial, textural, and contextual information) and 

thresholds that would correctly classify image objects created in the segmentation process.  Training 

subplots were selected that captured the largest range in plant community composition and bare 

ground cover, and were spatial distributed across the study area.  Thresholds associated with specific 

features and land cover classes were adjusted to optimize our OBIA cover estimates with the ground-

measured cover data within an acceptable error of ±5%, depending on land cover class.  Once a rule-set 

was developed for the training subplots, it was applied to a secondary subset of the subplots or 

validation subplots.  Validation subplot cover extractions were then used for the data analysis.   

 

 Subplot scale 

For individual 30x33 m subplots, rule-sets that were developed for the individual sites were used.  

Thresholds associated with features in these rule-sets were adjusted or refined for each subplot, 

essentially creating 65 rule-sets with a range of thresholds used to estimate cover.   
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 Regional and Network scale 

Rule-sets on the regional and network scale were also based on site rule-sets.  Specific features used in 

site rule-sets for each cover class were first summed (e.g. if NDVI was used in 40 of the 65 rule-sets to 

classify live trees, it received a score of 40).  Features that were used most often (had the highest score) 

were selected for each land cover class.  Those features selected were then evaluated using the training 

subplots to determine which one(s) would most accurately estimate the specified land cover class for 

both the region and network scale.  Thresholds associated with the features were adjusted to optimize 

our OBIA cover estimates with the ground measured cover data.  Because both our regional and 

network rule-sets needed to account for more variation found within the imagery due to atmospheric 

conditions and timing of imagery acquisition, and vegetation differences across all sites, we increased 

our acceptable error rate to ±10% depending on land cover class for the regional and network spatial 

scales evaluated.  Once our training subplot rule-set was developed for each spatial scale, it was applied 

to the secondary subset of the subplots (validation subplots, 65 subplots for each model) for the data 

analysis.   

 

Statistical Analysis 

To determine whether the mean value responses were different between the OBIA data and ground-

measured data, we used a paired t-test for each land cover class by spatial scale.  Results from the 

paired t-tests were evaluated for significance using the Bonferroni correction (p < 0.05/5). Statistical 

assumptions for normality and variance were assessed.  Mean difference values for each land cover 

class by spatial scale were compared using one-way ANOVA and the Tukey-Kramer honestly significant 

difference multiple comparison method with a significance level of p < 0.05.  Ground measurements 

were always subtracted from estimates derived from OBIA, to determine if OBIA consistently 

overestimated or underestimated the land cover class of interest.  A simple linear regression model was 
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used to assess the relationship between ground-measurement data and OBIA data for each land cover 

class by spatial scale.  These regression models only apply within the context of the data set from which 

they are derived.   

 

 

 

RESULTS 

 

Live tree canopy cover measurements for site and subplot scales did not differ between the OBIA and 

ground-measurement methods however, for both network and regional scales, OBIA rule-sets were 

significantly less than ground measurements of live tree cover (Table1).  When running the network 

rule-set for individual sites, OBIA estimates for tree cover were significantly (p < 0.05) less than ground 

measurements on an average of 10.5% at Devine Ridge, Marking Corral, and Stansbury.  With the 

regional rule-set, OBIA estimates were significantly (p <0.05) less than ground measurements for tree 

cover on average by 10% at Marking Corral and Stansbury.   

 

Shrub canopy cover measurements did not differ between the OBIA and ground-measurement methods 

for the network, region, and site rule-sets (Table 1).  However, when individual sites were analyzed using 

the site rule-set, sites where antelope bitterbrush was present (Blue Mountain, Devine Ridge, and 

Marking Corral) did differ significantly between the OBIA and ground-measurement methods but were 

not consistently more or less than ground measured shrub cover estimates.   At the Blue Mountain site, 

OBIA shrub cover estimates were 5% higher than ground measurements.  At Devine Ridge and Stansbury, 

OBIA shrub cover estimates were lower than ground measurements by approximately 3%.  Shrub 

canopy cover measurements also differed significantly between the OBIA and ground-measurements 
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methods for the subplot rule-set.  OBIA shrub cover was on average 1.3% less than ground 

measurements however, the average mean difference range for the subplot rule-set was smaller than 

the other rule-sets but skewed towards underestimating shrub cover when compared to ground 

measurement which likely contributed to the significant difference (Table 1).   

 

Although no significant differences were found between the OBIA and ground-measurement methods 

for perennial herbaceous vegetation at any of the spatial scales evaluated (Table 1), interesting trends 

were observed.  OBIA estimates from the network rule-set for western juniper sites (Blue Mountain and 

Devine Ridge) on average were 10% greater than the ground estimates for perennial herbaceous 

vegetation.  For Utah juniper sites (Marking Corral, Stansbury, and Onaqui), OBIA estimates were less 

than the ground estimates on average for the perennial herbaceous vegetation by 4% when using the 

network rule-set.  

 

Litter cover estimates were significantly different between OBIA and ground-measurement methods at 

all spatial scales.  When comparing regional differences, western juniper sites were not significantly 

different between the two methods however, OBIA litter cover estimates on Utah juniper sites were on 

average 9% less than ground measured litter cover.  Bare ground estimates were not significantly 

different between OBIA and ground-measurements methods using the network, region, and site rule-set 

(Table1).  However, at the Stansbury site OBIA estimates were significantly less than ground 

measurements for bare ground for our network (14% less ) and regional (11% less) rule set.  Bare ground 

OBIA cover was consistently less than ground measurements at all sites by an average of 2% for the site 

and subplot rule sets with the exception of Devine Ridge, where bare ground OBIA cover was 1.3% 

higher than the ground measurements.  When running the region and network rule set, bare ground 

OBIA cover was consistently more than the ground measurements by an average of 5.5% with the 
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exception of Blue Mountain, where OBIA bare ground estimates were less than ground measurements 

by an average of 5.6%.   

 

Cover estimates from OBIA and ground measurements were highly correlated for land cover classes 

(excluding litter) using the subplot rule sets (r = 0.94 to 0.98) and only slightly lower for the site rule-sets 

(r = 0.78 to 0.95).  Litter correlations were lower for all spatial scale rule-sets (r = 0.24 to 0.74) which is 

likely an artifact of our hierarchical classification techniques for litter.  Because coarser rule-sets (region 

and network) account for more subplot variation over larger spatial scales, lower correlation values 

were expected (Fig. 2).   

 

DISCUSSION 

 

Karau and Keane (2007) suggest that when determining the optimal landscape extent (or spatial scale), 

the grain should be small enough to detect subtle changes resulting from management actions, but 

large enough to reflect the characteristic variability of important ecological processes such as fire, 

succession, and the biophysical environment in the appropriate spatial context.  Our research suggests 

that high-spatial resolution imagery and object-based image analysis techniques can capture most 

variations across the multiple spatial scales evaluated for our designated land cover classes.  When 

analyzing region and network scales, the trade-off for decreased precision of our land cover classes may 

be useful to prioritize fuel-management strategies but will unlikely capture subtle shifts in understory 

plant communities that may be detected at the subplot or site scale.   

 

For live trees, perennial herbaceous vegetation, and bare ground, OBIA cover estimates continually 

improved as spatial scale decreased.  Average mean differences were only significantly different 
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between spatial scales for live trees where both network and region rule-sets underestimated tree cover.  

This underestimation is likely due to shadows.  Shadows influence most remote sensing classification 

processes and although shadow effects can be minimized by collecting imagery close to solar noon or 

even creating high dynamic range nadir images (Cox and Booth 2009), shadow inaccuracies often occur.   

On a site level, we could adjust for specific shadows using expert knowledge of tree canopies however, 

when total shadow cover ranges from <1% to 15.5% of the total subplot cover, it is difficult to merge 

and grow known tree objects (Hulet et al. in review a) consistently across all sites for both the region 

and network rule-sets.  

 

Our underestimation of litter at all scales may be an artifact of the hierarchical design we used to classify 

litter.  Because we typically classified the more distinguishable land cover classes first (e.g., trees, bare 

ground, and shrubs), unclassified objects were often classified as litter without establishing features 

specific for litter cover.  When analyzed by site, Stansbury’s OBIA litter cover was consistently 

underestimated while bare ground cover was consistently overestimated when compared to ground 

measurements.  One probable cause for this is the patchy nature of cheatgrass cover.  Although 

cheatgrass was present at all sites, it comprised approximately 20% of the litter land cover class at 

Stansbury and <5% at all other sites.  Because it was a small component specific to Stansbury, regional 

and network rule-sets did not likely account for this anomaly and cheatgrass was often misclassified as 

bare ground.   

 

Atmospheric properties typically play the largest role in feature class selection and are often the most 

difficult to control.  Although our high-spatial resolution imagery was collected within one week, 

spectral reflectance values for specific land cover classes (i.e. live trees) had wide ranges of values. 

Thresholds must be adjusted to compensate for these differences.  Many of the classes were difficult to 
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distinguish with spectral features alone; by incorporating other features such as neighbor relationships 

(relative border), we could accurately grow and merge segmented objects to better define our desired 

land cover classes.  Texture was not included in this analysis due to our segmentation parameter 

selection (Fig. 1).  Although we explored multiple texture features in combination with segmentation 

parameters, we found that neighbor relations were most effective in capturing the variation of the land 

cover classes found in P-J woodlands.  With smaller objects, we essentially increased our edge effect 

reducing texture analysis possibilities (Laliberte and Rango 2009).  As shown in figure 1, we consistently 

classified more spectrally-distinguishable land cover classes first.  However, we do not necessarily 

recommend adhering to any specific order of classification.  Hierarchical, self-organization criteria were 

useful when describing our land cover classes and when possible, should be consistent if extending 

across multiple spatial scales.  

 

Results are specific for our high spatial-resolution imagery and should not automatically be extended to 

other P-J woodlands.  Further research should include testing the repeatability of our rule-set across 

multiple spatial resolution and extents.  Additionally, further research will relate classified images and 

patterns extracted through OBIA techniques to ecological functions and processes.   

 

 

MANAGEMENT IMPLICATIONS 

 

Our intent was to test the accuracy between object-based image analysis cover and ground-measured 

cover estimates from high-spatial resolution imagery across multiple spatial scales.  Our results suggest 

that site and subplot scales most accurately account for specific site anomalies however, network and 

regional rule-sets were within 10% of the ground data for all land cover classes.  Although land 
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management objectives will ultimately drive the selection of the spatial extent, we recommend using 

site specific rule sets for high-spatial resolution imagery when possible.  Site specific rule sets can better 

account for variations found in vegetation and ground cover while reducing shadow effects.  Also, 

because imagery is often collected at different temporal scales, it is difficult to account for atmospheric 

variations found within the imagery when classifying a broad range of site which will ultimately require 

more time to select features and threshold for the classification.  And finally, site specific rule sets 

sufficiently represent most management needs at an operational level.  As shown in Hulet et al. (in 

review a&b), site specific rule-sets developed for high-spatial resolution imagery can be used to monitor 

and evaluate rangeland health, determine when to implement vegetation treatments, and assess the 

spatial distribution of fuels following fuel-reduction treatments.  Regional and network scales may aid in 

prioritizing areas that have a higher risk for catastrophic wildfires events or increased soil erosion 

potential however, subtle shifts in understory vegetation including weed invasions, may be missed.    

 

This study shows the utility of high-spatial resolution imagery and object-based image analysis 

techniques for monitoring and assessing vegetation and ground cover.  Rule sets developed on ground-

measured subplots (30x33 m) were compared over larger extents using a secondary subset of ground-

measured subplots.  In combination with imagery acquisition, land managers could systematically place 

ground-measured subplots across an area of interest that would capture the variation found on that 

specific site.  Then, use those subplots to develop rule sets that could be applied across the site to 

support land management decisions and complement ground-measurements on a landscape level. 
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Tables 

 

Table 1.  Description of filters, segmentations, and features used to classify land cover classes in this study.  Further detail and 
formulas for calculating filters and features can be found in Trimble's eCognition Developer reference book (Trimble 2011).   

        Description         
Image Filters 

Median Filter Replaces the pixel value with the median value of neighboring pixels. 

Convolution Filter - Gauss Blur  Gaussian smoothing filter (Guass Blur) uses a kernel, which is a square matrix of a 
value that is applied to the image pixels.  Each pixel value is replaced by the 
average of the square area of the matrix centered on the pixel.   

Segmentations 
Multiresolution Segmentation             
(Convolution filtered R, G, B bands) 

Applies an optimization procedure which locally minimizes the average 
heterogeneity of image objects for a given resolution.   

Spectral Difference Segmentation  Merges neighboring objects according to their mean layer intensity value. 

Features 
Spectral 

Mean Brightness Sum of mean values of RGB for an image object divided by 3. 

Mean                                                   
(B & NIR bands) 

Layer mean value calculated from the values of all pixels forming an image object. 

Band Ratio                                          
(G bands) 

Layer mean value of an image object divided by the sum of all layer mean values.  

NDVI Normalized difference vegetation index = (NIR - R)/(NIR + R) 

SAVI Soil-adjusted vegetation index = ((NIR - R)/(NIR + R + L)) * (1 + L); L = 0.5 

HSI transformation: Hue                 
(median filtered R, G, B bands) 

Hue (color) transformation equations are based upon the maximum (greatest) 
RGB value and the minimum (smallest) RGB values.   

Spatial 
Area Number of pixels forming an image object. 

Contextual 

    

Relative border   Describes the ratio of the shared border length of an image object (with a 
neighboring image object assigned to a defined class) to the total border length.  

R = Red, G = Green, B = Blue, NIR = Near Infrared, HSI = Hue, Saturation, Intensity 
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Table 2.  (A) Summary statistics for land cover classes by spatial scale for object-based image analysis (OBIA) and ground-measured (Gnd) sampling methods (N = 65).  (B) 
Comparison statistics of land cover classes mean percent cover estimates from OBIA and Gnd data using a paired t-test.  (C) Comparison statistics between spatial scale average 
mean differences by land cover class.  Differences were calculated by subtracting ground measurements from OBIA data.   

  (A)            (B)     (C )       

Land Cover 
Class Method 

Spatial 
Scale 

Mean       
(% Cover) SE 

Range       
(% Cover) 

Spatial 
Scale p-value 

95% CI        
(% Cover) 

Spatial 
Scale 

Average Mean 
Difference       
(% Cover) SE 

Average Mean 
Difference Range    

(% Cover) 

Live Trees Gnd - 25.64 1.88 1.7-72.6 
 OBIA Network 19.83 1.57 4.5-54.0 Network 0.0003*  -8.85--2.77 Network         -5.81b 1.18  -40-17.3 

Region 21.33 1.57 4.5-56.0 Region 0.0062*  -7.34--1.26 Region         -4.30b 1.18  -38.5-23.0 
 Site 25.98 1.57 4.4-61.2 Site 0.2039  -0.43-1.97 Site           0.77a 1.18  -18.5-14.7 
 Subplot 25.76 1.57 3.3-64.8 Subplot 0.8328  -1.05-1.30 Subplot           0.12a 1.18  -10.8-14.7 
Shrubs Gnd - 11.59 1.06 0.0-41.9 

OBIA Network 12.61 0.97 2.5-30.5 Network 0.2930  -0.90-2.94 Network           1.02a 0.77  -14.8-22.0 
Region 11.64 0.97 2.4-31.2 Region 0.9586  -1.77-1.86 Region           0.05a 0.77  -13.6-20.9 

 Site 11.41 0.97 0.8-37.7 Site 0.8827  -1.04-1.20 Site           0.08a 0.77  -12.2-11.5 
 Subplot 10.27 0.97 0.0-41.6 Subplot 0.0008*  -2.06--0.57 Subplot          -1.32a 0.77  -11.0-3.8 
Perennial 
Herbaceous 
Vegetation 

Gnd - 14.05 0.90 1.9-30.5 
OBIA Network 15.71 1.17 0.7-57.0 Network 0.2520  -1.21-4.54 Network           1.67a 0.91  -20.2-32.6 

Region 15.06 1.17 1.2-38.9 Region 0.2683  -0.80-2.84 Region           1.02a 0.91  -19.5-19.1 
Site 13.59 1.17 2.2-31.5 Site 0.4389  -1.64-0.72 Site          -0.46a 0.91  -10.5-9.4 
Subplot 14.09 1.17 0.4-30.7 Subplot 0.8723  -0.45-0.53 Subplot           0.04a 0.91  -5.8-6.5 

Litter Gnd - 19.12 0.97 0.0-38.6 
 OBIA Network 11.66 0.90 2.1-23.0 Network <0.0001*  -9.50--5.43 Network          -7.46a 0.03  -30.1-6.9 
 Region 13.76 0.90 1.9-43.9 Region 0.0003*  -8.14--2.58 Region          -5.36a 0.03  -26.5-25.2 
 Site 14.27 0.90 2.1-30.6 Site <0.0001*  -6.64--3.07 Site          -4.85a 0.03  -26.1-9.4 
 Subplot 13.84 0.90 0.0-30.5 Subplot <0.0001*  -6.54--4.03 Subplot          -5.28a 0.03  -21.7-6.6 
Bare   
Ground 

Gnd - 30.20 1.83 6.7-62.3 
OBIA Network 34.11 1.92 3.8-64.7 Network 0.0504  -0.01-7.84 Network           3.91a 1.46  -47.9-37.2 

 Region 32.73 1.92 3.8-63.5 Region 0.1900  -1.29-6.35 Region           2.53a 1.46  -47.9-37.1 
Site 28.88 1.92 2.8-53.4 Site 0.0946  -2.86-0.23 Site          -1.31a 1.46  -21.0-14.0 

    Subplot 29.17 1.92 5.8-55.8   Subplot 0.0068*  -1.77--0.30   Subplot          -1.03a 1.46  -14.5-3.5 
SE = standard error; CI = confidence interval 
* indicates significant differences using the Bonferroni correction (p < 0.01) between image analysis and ground measurement mean values using the paired t-test. 

Average mean differences with different letters within land cover class are significantly different (p < 0.05) from other spatial scale rule-sets using Tukey-Kramer honestly significant difference 
multiple comparison procedure.  
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Figures 

 

 

Figure 1. Hierarchical classification process using eCognition 
Developer.  Bold print represents land cover classes listed in the order 
classified.  Notes in parentheses indicate feature(s) and band(s) used 
to classify land cover classes for individual subplot and site rule-sets. 
Italicized features were used to classify land cover classes for the 
region and network models.  RGB = Red, Green, and Blue bands;  NDVI 
= Normalized Difference Vegetation Index; Rel. border = Relative 
border; IR = Infrared band; SAVI = Soil-Adjusted Vegetation Index, HSI 
= Hue, Saturation, and Intensity transformation. 

Imagery

Multiresolution Segmentation
Size (100), Shape (0.2), Compactness (0.5)

Median Filter (RGB)

Spectral Difference Segmentation
Maximum Spectral Difference (1000/2000)

Convolution Filter – Gauss Blur (RGB)

Classifications

1. Shadow (Brightness)
2. Live Trees (NDVI, Rel. Border, Mean IR, Area, SAVI)
3. Bare Ground (SAVI, Brightness, Mean B)
4. Shrubs (HSI transformation hue median filter RGB, Rel. Border, 

Brightness, NDVI, Area)
5. Perennial Herbaceous Vegetation (NDVI, Rel. Border, Band 

Ratio G, Brightness)
6. Litter (unclassified object = litter, Rel. Border, Brightness, 

SAVI)
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Figure 2. Regressions of percent cover estimates from an object-based image analysis (y-axis) on ground-measurements (x-axis) 
using subplots across all study sites (N = 65).  Each row represents a land cover class (live trees, shrubs, perennial herb = perennial 
herbaceous vegetation, litter, and bare ground).  Columns represent each spatial scale rule-set (network, region, site, and 
subplot) used to evaluate land cover classifications.     
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